자기연마법을 응용한 미세금형부품의 초정밀 연마

안병문 (서울산업대 대학원 기계공학과), 김육배 (연세대 대학원 기계공학과), 박성준 (연세대 NT 연구단), 이상조 (연세대 기계공학부)

Ultra Precision Polishing of Micro Die and Mold Parts using Magnetic-assisted Machining


ABSTRACT

This paper suggests the selective ultra precision polishing techniques for micro die and mold parts using magnetic-assisted machining. Fabrication of magnetic abrasive particle and their polishing performance are key technology at ultra precision polishing process of micro parts. Conventional magnetic abrasives have disadvantages, which are missing of abrasive particle and inequality between magnetic particle and abrasive particle. So, bonded magnetic abrasive particles are fabricated by several method. For example, plasma melting and direct bonding. Ferrite and carbonyl iron powder are used as magnetic particle where silicon carbide and Al₂O₃ are abrasive particle. Developed particles are analyzed using measurement device such as SEM. Possibility of magnetic abrasive and polishing performance of this magnetic abrasive particles also have been investigated. After polishing, surface roughness of workpiece is reduced from 2.927 µm Rmax to 0.453 µm Rmax.

Key Words : Magnetic-assisted Machining (자기연마), Micro die and mold parts (미세금형부품), Magnetic flux strength (자기밀도), Abrasive particle (연마입자)

1. 서론

최근 들어 각종의 생산공정 및 부품들이 점차 미세화되어가고 있으며, 이를 바탕으로 마이크로나노 기술의 일부로서 각종의 미세부품제작기술에 대한 연구가 활발하다. MEMS 기술은 대표적인 미세부품 제작기술로서 제작 가능한 제품의 수는 해마다 기어보람이 가장 적극적, 기계적 방법을 응용한 각종의 특수미세가공법이 나날이 그 성능의 발전을 다지고 있다. 이러한 미세 제작생산기술의 기지를 마련하기는 미세연마기술이라 할 수 있으며, 기술적으로 3차원 미세부품의 표면면을 평활할 수 있는 방법이 별로 많지 않다. 벌기로 가능한 공정으로는 미세 연삭 속도를 이용한 표면연마, 그리고 미세 전자 가공(micro ECM) 혹은 이로부터 얻은 변형된 방법 등이 점차 미세부품 표면연마에 적용될 수 있으나 미세연마를 이용한 방법은 속도의 제한이 어렵고 속도에 비해 절속이 더 무중력하여 비효율적이며, 미세 전자연마는 전극에 따라 조정이 더 어렵고 환경에 유해한 단점이 있다. 따라서 본 연구에서는 이러한 다양한 대응책 없이는 3차원 미세부품의 표면연마 기술로서 기존의 자기연마법을 응용한 미세 자기연마법을 개발하였다.

2. 미세부품 표면연마기술

2.1 자기연마 기공의 개요

기존의 자기연마법의 가공매개물질은 전자석의 코어를 언마공구(Quill)로 하여 공구와 공작물사이에 간극을 주고 그 공간에 자성입자를 전자입자를 게추게되면 전류를 통해 자성화된 자성입자는 공작물까지 사슬구조로 정렬하며 이것이 유연성을 가진 언마투성이 된다. 이때 가공효율은 자극과 공작물 사이의 끄어 떼기는 힘, 언마공구(Quill)의 회전력 그리고 간극에서의 자극밀도 크기 및 분포상태, 자성입자의 자극특성 등에 의해 발생하고 결정된다.
본 연구에서 적용하는 미세자연마법의 가공에 카니즘은 기존의 자기연마법에서 크게 벗어나지 않지만 이를 미세부품의 표면연마공정에 적용하여 미세공정하는 데에는 수 미크론에서 수 나노크기의 기능성 집합가 요구되며 미세 연마공구(Quill)의 결합의 자기성결합은 요구된다.

2.2 자기연마입자 제조

자성입자와 연마입자를 단순 혼합하여 사용하게 되면 연마공구에 부착된 자기력과 회전력을 이용 Fig. 2에 볼 수 있도록 연마입자는 공구의 회전에 의한 원심력의 영향으로 가공된 입자에 도착하게 되며 시간이 지날수록 연마입자가 탈락되는 것을 확인할 수 있다. 따라서, 연마입자와 자성입자를 물리적으로 결합하여 사용하게 되면 가공성능이 좀 더 우수할 것을 예측할 수 있다.

3. 실험장치

3.1 실험장치의 구성

미세 공정부품의 표면 연마에 적용하기 위한 자

기연마공구에는 전용기계가 아닌 일반 머신센터에 전자식과 연마공구(Quill)로 구성된 Magnetic-

assisted machining head를 부착하여 사용하며 정비의 대략적인 구조는 Fig. 3과 같다.

간략하게 설명하면 그림과 같이 머신센터 주축에 지그를 이용하여 전자식을 고정시킨다. 그리

고 연마공구가 전자식 코어의 기능을 하도록 전자

식 공심을 동작시켜 전자공급장치를 설치하여 전

자식에 전압을 부가하는 방식이다.
4. 입자제조 및 제조결과

4.1 입자 제조방법
본 연구에서 사용하는 자성입자와 연마입자의 종류와 입자의 크기는 Table 1에 나타내었다. 2.2절에서 나타낸 바와 마찬가지로 접착제에 의한 입자결합방법으로 제조하며 자기연마입자 제조는 3단계의 과정을 거친다.

1단계는 자성입자(55wt%)와 연마입자(45wt%)를 Ball mill(혹은 Attrition mill)을 사용하여 약 30분 동안 혼합한다.
2단계는 자성입자와 연마입자의 혼합물말뚝을 급업하여 분포시킨 후 접착제를 첨부시킨다. 이때 사용되는 접착제는 ALTEC의 Cyanoacrylate Adhesive E이다. 유성활성화인 경우 접착시간은 20-40분이며 접착제는 산업용 접착제로 통과되어 100%의 혼합물말뚝에 대하여 3-5%로 한다.
3단계는 총계과정으로써 Ball mill(혹은 Attrition mill)을 사용하여 혼합시킨 입자의 크기에 따라서 공정 시간을 결정한다.

4.2 입자 제조 결과

Table 1. Experimental system

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Machining center: TNV - 40A (SAEIL Co., Ltd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic-assisted Machining head</td>
<td>Electro magnetic rod (Quill)</td>
</tr>
<tr>
<td>[φ 5mm, Coil: 4800, magnetic flux strength: 0.45T (DC 50 V, 2 A)]</td>
<td></td>
</tr>
<tr>
<td>Magnetic particle</td>
<td>Carbonyl Iron (average grit size: 7-9 μm)</td>
</tr>
<tr>
<td>Abrasive particle</td>
<td>Silicon Carbide (average grit size: 1-3 μm)</td>
</tr>
<tr>
<td>Magnetic polishing abrasive</td>
<td>Union by bond of Carbonyl Iron and Silicon Carbide (average grit size: 10-15 μm)</td>
</tr>
</tbody>
</table>

Table 2. Experimental conditions

<table>
<thead>
<tr>
<th>No.</th>
<th>Magnetic polishing abrasive</th>
<th>Gap (mm)</th>
<th>Feed (mm/min)</th>
<th>Quill rpm</th>
<th>Workpiece (Heat Treated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbonyl Iron + Silicon Carbide</td>
<td>0.5</td>
<td>5</td>
<td>500</td>
<td>SM45C</td>
</tr>
<tr>
<td>2</td>
<td>Carbonyl Iron + Silicon Carbide</td>
<td>1</td>
<td>5</td>
<td>500</td>
<td>SM45C</td>
</tr>
<tr>
<td>3</td>
<td>Carbonyl Iron + Silicon Carbide</td>
<td>1.5</td>
<td>5</td>
<td>500</td>
<td>SM45C</td>
</tr>
</tbody>
</table>

Fig. 5 SEM Photograph
(Union by bond of Carbonyl Iron and Silicon Carbide)

자기연마용 입자제조에 사용된 자성입자와 연마 입자를 주사전자현미경(SEM)으로 관찰하였으며 그 결과를 Fig. 4에 나타내었다. 두 입자를 접착제에 의해 결합한 후 흐리하여 제조한 결과를 Fig. 5에 나타내었다.
연마입자인 Silicon Carbide는 Fig. 4(a)에서 보듯이 입자모양이 예리한 모서리를 가지고 있으며 연마입자의 특성으로서 중요한 경도는 약 2480Mpa 정도의 값이다. 비록 Diamond과 Boron Carbide보다 경도와 연마능력은 낮지만 비활성제의 연마와 거친 경질재료의 마무리용으로 널리 사용되고 있다. 자기연마용 Carbonyl Iron은 Fig. 4(b)에 나타내었으며 입자모양이 구형이고 순도 99.5% 이상의 분말로서 자성입자의 성질이 매우 우수하다고 할 수 있다.
Fig. 5(a)와 Fig. 5(b)는 제조된 입자를 서로 다른 위치에서 관찰한 결과이다. 그러면서 볼수있듯이 구형의 Carbonyl Iron 입자에 예리한 모서리를 가지고 있는 Silicon Carbide가 접착제에 의하여 결합되어 있는 현상을 관찰할 수 있다. 이와 같이 자성입자와 연마입자를 같이 결합하여 자기연마 입자를 사용함으로써 연마입자의 탈락을 방지하고 균일한 혼합비율을 일정하게 유지함으로써 가공성능을 향상시킬 수 있다.
5. 실험 및 실험결과

5.1 실험

본 실험에서는 8인 이상의 자가연마법을 이용한 연마작업을 통해 공공기관의 장기적인 목적인 시험의 표면 거칠기를 측정할 기준으로 평가하였다.

실험에 필요한 전자시약의 연마공구를 이용한 연마공구는 Table 1과 Table 2에 정리하였다. 또한 연마공구를 제조하여 기초시험에 기준 자가연마법에 관한 연구내용을 참고하여 결정하여 하였으며 시험은 지름 50mm의 알루미늄 SM45C를 사용하였다. 표면은 금속판에 두어 수압실점 전의 조기 표면적을 측정하였다.

5.2 실험결과

실험한 결과는 초기 표면적미경 R_a 0.113 μm, R_max 2.927 μm에서 30분 연마작업 후 표면적미경으로 R_a 0.086 μm, R_max 0.453 μm로 표면 상태가 향상되었다.

![Fig. 8 Polishing result](image)

Fig. 7 Photograph of Surface (×320)

6. 결론

본 연구에서는 자가연마법을 이용하여 미세 금형작업의 선택적 표면연마의 적용성을 파악하는 실험을 진행하였다. 자가연마법은 미세결합부품에 적용하기 위해서 미세구조물에 적합하도록 연마재가 정합된 자가연마기술자(자기연마기술자)의 제조와 전자시약을 이용하여 끈임새 자가연마가 발생할 수 있는 장치를 제작하였다.

자기연마기술자는 접착제에 의한 제조 방법으로서 플라즈마 용융에 의한 제조법에 비하여 공정의 간소화와 제조기간,비용 등의 사항을 개선할 수 있었다. 또한 접착제에 의한 단순 접착으로 인한 특성의 영향으로 자성이의 큰 변화 없이 소크록 크기의 기능성을 요구할 필요는 없다. 이러한 접착법은 미세 구조물을 및 3차원 표면 연마작업에 적합하다고 생각된다. 연마작업은 표면밀도가 정도의 개선을 연마시간의 변화에 따라 평가하였으며 그 결과 임의의 크기는 표면 향상에 따라서 미세 금형작업의 선택적 표면 연마 표면 거칠기를 낮소 스케일로 구현할 수 있음을 확인하였다.

참고문헌

3. 이영건, 배승열, “자공연마마 Ferguson-FC 목제작업의 조정 유수” 한국 재료학회지, 제 11 권, 제 10 호, pp. 907-911, 2001