Global Bifurcations in the Asymmetric Vibrations of a Circular Plate

Yeonh. Ye Yeo and Won Kyoung Lee

Key Words: nonlinear vibration of circular plate, global bifurcation, Silnikov type homoclinic orbit

ABSTRACT

We investigate global bifurcation in the subharmonic motion of a circular plate with one-to-one internal resonance. A system of autonomous equations is obtained from the partial differential equations governing the system by using Galerkin's procedure and the method of multiple scales. A perturbation method developed by Kovacic and Wiggins is used to find Silnikov type homoclinic orbits. The conditions under which the orbits occur are obtained.

Fig. 1 A schematic diagram of a clamped circular plate.
2. 문제의 공식화

운동방정식은 Efstrathiades [17]가 유도한 불완전원의 비감쇠자유진동의 운동방정식에 감쇠항, 가중항을 추가하여 다음과 같이 나타낼 수 있다.

\[
\rho \frac{\partial^2 w}{\partial t^2} + \nabla^2 \left( \nabla^2 w \right) = (1 - \nu) L_1(w, D) + L_2(w, F) - \frac{\partial r}{\partial t} + p(r, \theta, t)
\]

\[
\nabla^2 (S \nabla^2 F) = (1 + \nu) L_1(F, S) + \left( \frac{1}{r} \frac{\partial}{\partial r} - \frac{1}{r^2} \frac{\partial}{\partial \theta} \right)^2 + \frac{1}{r^2} \frac{\partial^2 w}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2}
\]

\]

여기서,

\[
L_1(w, D) = \frac{\partial^2 D}{\partial r^2} \left( \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right)
\]

\[
+ \frac{\partial^2 w}{\partial \theta^2} \left( \frac{1}{r} \frac{\partial D}{\partial r} + \frac{1}{r^2} \frac{\partial^2 D}{\partial \theta^2} \right)
\]

\[-2 \left( \frac{1}{r} \frac{\partial D}{\partial r} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \right) \frac{1}{r} \frac{\partial^2 w}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \frac{1}{r^2} \frac{\partial^2 w}{\partial r^2} \]

\[
L_2(w, F) = \frac{\partial^2 D}{\partial r^2} \left( \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} \right)
\]

\[
+ \frac{\partial^2 F}{\partial \theta^2} \left( \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right)
\]

\[-2 \left( \frac{1}{r} \frac{\partial F}{\partial r} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \right) \frac{1}{r} \frac{\partial^2 F}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \frac{1}{r^2} \frac{\partial^2 F}{\partial r^2} \]

\[
L_1(F, S) = \frac{\partial^2 S}{\partial r^2} \left( \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} \right)
\]

\[
+ \frac{\partial^2 F}{\partial \theta^2} \left( \frac{1}{r} \frac{\partial S}{\partial r} + \frac{1}{r^2} \frac{\partial^2 S}{\partial \theta^2} \right)
\]

\[-2 \left( \frac{1}{r} \frac{\partial S}{\partial r} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \right) \frac{1}{r} \frac{\partial^2 S}{\partial r \partial \theta} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \frac{1}{r^2} \frac{\partial^2 S}{\partial r^2} \]

식 (1a)에서 \( F \)는 면내 또는 (in-plane inertia)를 무시할 경우, 면내 평행조건을 만족하는 힘 함수 (force function)이고, \( w = w_0 / z_0 \)는 중간평면 형성 \( w_0 \)와 중심에서의 두께 \( z_0 \)의 정의되는 무차원 중간평면의 정합성이 환경이다. \( r = r_0 / R \)은 반경 \( r \)과 최대반경 \( R \)로 정의되는 무차원 반경이다. \( \theta \)는 각, \( \rho(r, \theta, t) \)는 가중함수이다. \( D \)는 \( D = D_0 / E_0 z_0 \)로 정의되는 무차원 flexural rigidity이다. \( D_0 = E_h z_0 / 12(1 - \nu^2) \)는 탄성계수 \( E \)와 두께 \( h \), 포화성 비 \( 1 - \nu \)로 정의되는 flexural rigidity이고, \( E_0 \)는 중심에서의 탄성계수이다. \( S = E_0 z_0 / E_h \)로 정의되는 무차원함수이다. \( \rho = \rho_0 R^4 / E_0 z_0 \)로 정의되는 함수로 밀도 \( \rho_0 \)에 비례한다.

\[
F, \ w \와 \ 면내 \ 변위 \mathbf{u}, \ u_\theta \의 \ 관계식은 \ 다음과 \ 같다.
\]

\[
e_r = S \left( \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \right),
\]

\[
e_\theta = S \left( \frac{\partial^2 F}{\partial r^2} - \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2} \right),
\]

\[
e_{u_\theta} = 2S(1 + \nu) \left( \frac{1}{r} \frac{\partial F}{\partial r} - \frac{1}{r^2} \frac{\partial \theta}{\partial \theta} \right).
\]

여기서,

\[
e_r = \frac{\partial u_r}{\partial r} + \frac{1}{r} \left( \frac{\partial \omega}{\partial r} \right),
\]

\[
e_\theta = \frac{\partial u_\theta}{\partial r} + \frac{1}{r} \frac{\partial \omega}{\partial r} + \frac{1}{2r^2} \left( \frac{\partial \theta}{\partial \theta} \right)^2,
\]

\[
e_{u_\theta} = \frac{\partial u_\theta}{\partial r} + \frac{1}{r} \frac{\partial u_\theta}{\partial r} + \frac{1}{r} \frac{\partial \omega}{\partial \theta} \frac{\partial \theta}{\partial \theta}.
\]

원판의 불완전성은 작고(\( S = 1 \)) 불완전성은 \( \rho \)의 변화에 의해서만 기인한다고 가정하자. 즉, \( \rho \)는 \( r \)와 \( \theta \)의 함수이며, \( D \)와 \( \delta \)는 \( r \)만의 함수로 가정하자. 그리고, 동일한 절정(nodal diameter) 계수를 가지는 두 모드의 상호작용을 고려하면, 식 (1a)-(2c)의 정상상태는 다음과 같이 나타낼 수 있다 [17].

- 505 -
여기서, \( \phi(r) \)은 경계조건에 의해 결정되는 형상함수이고, \( x_i(t) \)와 \( x_j(t) \)는 시간에 따른 모드의 진폭을 나타내며, \( n \)은 진경의 계수를 나타낸다. \( \theta_0 \)는 원판의 불완전성에 의해 기인하는 것으로 \( \phi \)의 함수 형태에 의해 다음과 같이 결정되는 상수이다.

\[
\theta_0 = \frac{1}{2} \tan^{-1} \frac{2A_0}{A_{11} - A_{21}}
\]  

여기서,

\[
A_{11} = \iint_{0}^{2\pi} \! \! \! \! \! \int \! \phi \phi^2 r \cos^2 n\theta dr d\theta,
\]

\[
A_{21} = \iint_{0}^{2\pi} \! \! \! \! \! \int \! \phi \phi^2 r \sin^2 n\theta dr d\theta,
\]

\[
A_0 = \frac{1}{2} \iint_{0}^{2\pi} \! \! \! \! \! \int \! \phi \phi^2 r \sin 2n\theta dr d\theta.
\]  

\( \theta_0 \)는 불완전원판에서 절경의 위치를 결정하는 값이다. 원판원(\( \phi \)가 \( r \) 안의 함수)의 경우, 식 (4)에서 \( A_0 = 0 \)이고 \( A_{11} = A_{21} \)이므로 절경의 위치가 결정되지 않는다. \( \phi \)와 \( D \)가 모두 \( \theta \)의 함수인 경우 식 (3)에 나타나는 두 \( \theta_0 \)의 값을 서로 다르므로 두 모드의 절경은 적절하지 않는다[17].

식 (3)의 \( x_i(t) \)와 \( x_j(t) \)는 갈라질방법(Galerkin's procedure)을 이용하면 다음과 같은 두 상미분방정식에 의해 결정된다[17].

\[
\ddot{x}_i + \varepsilon \omega_i^2 \dot{x}_i + \omega_i^2 x_i + \varepsilon \omega_i^2 (\dot{x}_1^2 + \dot{x}_2^2) = \mu_i \cos \lambda t, 
\]

여기서, \( \cdot = d/dt \), \( \varepsilon \)은 작은 매개변수를 나타낸다. \( \omega_i, \delta, \gamma, \mu_i, i = 1, 2 \)는 다음과 같이 정의된다.

\[
\omega_i^2 = \frac{C_i}{M}, \quad \varepsilon \delta = \frac{F_{11}}{\lambda K_{11}}, \quad \varepsilon \gamma = \frac{B_{11}}{\lambda K_{11}},
\]

\[
\mu_i = \frac{N_i}{M}, \quad i = 1, 2
\]  

여기서,

\[
C_1 = K_{11} (A_{11} \tan^2 \theta_0 - 2A_0 \tan \theta_0 + A_{21}),
\]

\[
C_2 = K_{11} (A_{21} \tan^2 \theta_0 + 2A_0 \tan \theta_0 + A_{11}),
\]

\[
N_1 = \sec \theta_0 \{ A_{11} P_1 - A_{21} P_2 - (A_0 P_1 - A_{21} P_2) \tan \theta_0 \},
\]

\[
N_2 = \sec \theta_0 \{ A_{21} P_1 - A_{11} P_2 + (A_0 P_1 - A_{11} P_2) \tan \theta_0 \}.
\]

\[
M = (A_{11} - A_{21})(1 + \tan^2 \theta_0),
\]

\[
P_1 = \iint_{0}^{2\pi} \! \! \! \! \! \int \! p(r, \theta) \cos n\theta dr d\theta.
\]

\[
P_2 = \iint_{0}^{2\pi} \! \! \! \! \! \int \! p(r, \theta) \sin n\theta dr d\theta.
\]

\[
K_{11} = -\pi \int_{0}^{2\pi} \! \! \! \! \! \int \! A_0 \phi dr d\phi, \quad F_{11} = \frac{\pi}{4} \int_{0}^{2\pi} \! \! \! \! \! \int \! \phi (2\overline{A}_2 + \overline{A}_1 - \overline{D}_2) dr d\phi.
\]  

\( \overline{A}_1, \overline{A}_2, \overline{A}_3, \overline{B}_2 \)는 \( n, r, \nu, \phi \)와 함 함수 \( F \)의 형상차수(\( r \) 만의 함수)에 의해서 정의된 함수이다[17]. \( \theta_0, A_{11}, A_{21}, A_0 \)는 식 (4)와 (5)에서 정의된 상수이다. 가진함수 \( p(r, \theta, t) \)는 \( p(r, \theta, t) = p(r, \theta) \cos \lambda t \), 즉 가진전동수가 \( \lambda \) 인 조화기진으로 가정하였다.

제 (6)에서 두 고유전동수 \( \omega_1 \)과 \( \omega_2 \)의 차이는 작고, 가진전동수 \( \lambda \)는 고유전동수의 3 배와 가깝다고 가정하자. \( \lambda \)이 세 전동수는 \( \omega_1 \approx \omega_2 \approx \lambda/3 \)인 관계가 있다고 가정하자. \( \lambda \)가 고유전동수와 가까운 주파수의 경우에는 대해부분해석에서 실니코프형 호모클리닉궤도가 존재하지 않는다[18]. 또한 두 가진전동수 \( \mu_1 \)과 \( \mu_2 \) 중 하나는 실니코프형 호모클리닉궤도의 존재 조건에 기여하지 못한다.

따라서, 본 연구에서는 해석의 간결함을 위해 \( \mu = 0 \)인 경우로 가정한다. 이 경우는 식 (7)에서 \( N_1 = 0 \)일 때이고, 이로부터 \( P_1 \)과 \( P_2 \)가 다음과 같은 관계식을 만족해야 한다.

\[
(A_0 - A_{11} \tan \theta_0) P_2 = (A_{21} - A_0 \tan \theta_0) P_1
\]  

이 때 \( \mu_2 \)는 다음과 같이 정리된다.
\[ \mu_2 = \frac{N_2}{M} = \frac{P \sec \theta_0}{A_x - A_y \tan \theta_0} \]

or

\[ \frac{P \sec \theta_0}{A_{x1} - A_y \tan \theta_0}. \] (10)

게 (6)에서 \( \mu_i = 0 \) 인 경우 부동점을 조사하기 위해서 다음과 같이 이탈변수 \( \beta \) 와 \( \sigma \) 를 도입하자.

\[ \omega_i = \omega_0 + e \beta, \quad \lambda = 3 \omega_0 + e \sigma \] (11a, b)

여기서, \( \beta \) 는 두 고유진동수들 간의 이탈정도를 나타내고, \( \sigma \) 는 \( 3 \omega_0 \)에 대한 가중변수 \( \lambda \)의 이탈정도를 나타낸다.

\[ \mu_i = 0 \] 인 경우, 게 (6)에 다중간병법을 적용하기 위해 \( x_i(t), i = 1, 2 \) 를 다음과 같이 가정하자.

\[ x_i(t) = x_0(T_i, T_0) + \alpha x_i(T_0, T_i) + O(e^2) \] (12)

여기서, \( T_i = \omega_i t, \ i = 1, 2, \ldots \) \( \mu_i = 0 \) 인 경우, 식 (6)에 식 (12)를 대입하고 \( e \) 의 동일차수 계수들을 갈대 두면 다음과 같다.

\[ \varepsilon \]의 계수:

\[ D^2_0 x_{10} + \omega^2_0 x_{10} = 0, \] (13a)

\[ D^2_0 x_{20} + \omega^2_0 x_{20} = \mu_2 \cos \lambda T_0. \] (13b)

\[ \varepsilon \]의 계수:

\[ D^2_0 x_{11} + \omega^2_0 x_{11} = -2 D_0 D_1 x_{10} - \delta \omega_0^2 D_0 x_{10} - \gamma \omega_0^2 (x_{10}^2 + x_{10} x_{20}) \] (14a)

\[ D^2_0 x_{21} + \omega^2_0 x_{21} = -2 D_0 D_1 x_{20} - \delta \omega_0^2 D_0 x_{20} - \gamma \omega_0^2 (x_{20}^2 + x_{20} x_{10}) \] (14b)

식 (13)의 해 \( x_{10} \) 와 \( x_{20} \)는 다음과 같다.

\[ x_{10} = A_1(T_i) \exp(i\omega_0 T_0) + cc, \]

\[ x_{20} = A_2(T_i) \exp(i\omega_0 T_0) + A_3 \exp(i\lambda T_0) + cc. \] (15)

여기서, \( \Lambda = \mu_i/2(\omega_0^2 - \lambda^2), cc \) 는 앞 항들의 공액부소수를 나타내고, \( A_1(T_i) \) 와 \( A_2(T_i) \)는 복소함수이다.

식 (14)에 식 (15)를 대입하고 식 (11)을 적용하면 가해조건은 다음과 같다.

\[ i(2A_1 + \delta \omega_0^2 A_1) + \gamma A_1 \left[ 2(\Lambda A_1)^2 + 2A_1^2 + 2\Lambda^2 \right] + \Lambda A_1 \exp[2i\beta T_i] + 2\Lambda \Lambda A_1 \exp[(2\beta + \sigma) T_i] = 0 \] (16a)

\[ i(2A_2 + \delta \omega_0^2 A_2) + \gamma A_2 \left[ 4(\Lambda A_2)^2 + 3A_2^2 + 6\Lambda^2 \right] + A_2 \Lambda^2 \exp[-2i\beta T_i] + \Lambda A_2 \exp[(2\beta + \sigma) T_i] + 3\Lambda A_2 \exp[i\sigma T_i] = 0 \] (16b)

여기서, \( \varepsilon = d(\varepsilon)/dt \)이다. 식 (16)을 실수부와 허수부로 분리하기 위해 다음과 같이 복소함수 \( A_1(T_i) \) 와 \( A_2(T_i) \)를 정의하자.

\[ A_i = \sqrt{2a_i} \exp[i\theta_i], \quad i = 1, 2 \] (17)

여기서, \( a_i, \theta_i, i = 1, 2 \) 는 \( T \)의 실합수이다. 식 (17)을 식 (16)에 대입하고 실수부와 허수부로 분리하면 다음과 같은 자율상미분방정식을 얻는다.

\[ a_i' = -\delta \omega_0^2 a_i + 2\gamma \omega_0 a_i (a_i \sin 2(\theta_i - \theta_i) + \sqrt{2\Lambda} a_i \sin(2\theta_i + 2\theta_i)) \] (18a)

\[ \theta_i' = -\beta - \frac{\sigma}{3} + \gamma \omega_1 \left[ 3a_i + 2a_2 + \Lambda^2 \right] + a_i \cos 2(\theta_i - \theta_i) + \sqrt{2\Lambda} a_i \cos(2\theta_i + 2\theta_i) \] (18b)

\[ a_i' = -\delta \omega_0^2 a_i - \gamma \omega_0 \left[ 2a_i a_i \sin 2(\theta_i - \theta_i) - \sqrt{2\Lambda} a_i \sin(2\theta_i + 2\theta_i) - 3\sqrt{2\Lambda} a_i \sin 3\theta_i \right] \] (18c)

\[ \theta_i' = -\frac{\sigma}{3} + \gamma \omega_2 \left[ 2a_i + 3a_2 + 3\Lambda^2 \right] + a_i \cos 2(\theta_i - \theta_i) + \frac{\Lambda a_i}{\sqrt{2} a_i} \cos(2\theta_i + 2\theta_i) \] (18d)

여기서, \( \theta_i = \theta_i - (\beta + \sigma/3)T_i \)이고 \( \theta_i = \theta_i - (\sigma/3)T_i \)이

\[ q_1 = \theta_1 - \theta_2, \quad q_2 = \theta_2, \quad p_1 = a_1, \quad p_2 = a_1 + a_2. \tag{19} \]

식 (18)을 식 (19)을 이용하여 변환하면 다음과 같다.

\[ \dot{p}_1 = 2p_1(p_2 - p_1) \sin 2q_1 \]
\[ + 2q_1 \left[ c - \gamma b(p_2 - p_1) \sin 2q_1 \right] + O(\varepsilon^2), \tag{20a} \]
\[ \frac{\partial H}{\partial q_1} \]
\[ + 2q_1 \left[ c - \gamma b(p_2 - p_1) \sin 2q_1 \right] + O(\varepsilon^2) \]
\[ \dot{q}_1 = -b + (2p_1 - p_1)(1 - \cos 2q_1) \]
\[ + \varepsilon \left[ - \gamma b(p_1 + 2p_1) - \gamma b(p_2 - p_1) \cos 2q_1 \right] \]
\[ - \frac{3}{2} f \sqrt{p_2 - p_1} \]
\[ + \frac{f (2p_1 - 3p_1)}{\sqrt{2} \sqrt{p_2 - p_1}} \cos (2q_1 + 3q_2) \] \[ + O(\varepsilon^2), \tag{20b} \]
\[ \frac{\partial H}{\partial q_1} + \varepsilon \left[ - \gamma b(p_1 + 2p_1) \right] \]
\[ - \gamma b(p_2 - p_1) \cos 2q_1] + O(\varepsilon^2) \]
\[ \dot{p}_2 = \varepsilon \left[ -2cp_2 - 2\gamma bp_1(p_2 - p_1) \sin 2q_1 \right] \]
\[ + 3 \sqrt{2} f \left( p_2 - p_1 \right) \sin 3q_2 \]
\[ + 3 \sqrt{2} f p_2 \sqrt{p_2 - p_1} \sin (2q_1 + 3q_2) \] \[ + O(\varepsilon^2), \tag{20c} \]
\[ \frac{\partial H}{\partial q_2} + \varepsilon \left[ -2cp_2 \right] \]
\[ - 2 \gamma bp_1(p_2 - p_1) \sin 2q_1] + O(\varepsilon^2) \]
\[ \dot{q}_2 = -p_1 + 3p_2 - s + p_1 \cos 2q_1 \]
\[ + \varepsilon \left[ 3f \sqrt{2} p_2 - p_1 \cos 3q_2 \right] \]
\[ + \frac{f p_2 \cos (2q_1 + 3q_2)}{\sqrt{2} \sqrt{p_2 - p_1}} \] \[ + O(\varepsilon^2). \tag{20d} \]
\[ \frac{\partial H}{\partial p_2} + O(\varepsilon^2) \]

그러므로 \( \cdot = d/d\tau \) 이다. 해밀턴 함수 \( H \) 는 다음과 같이 표현된다.

\[ H(p_1, q_1, p_2, q_2) = H_0(p_1, p_2, q_1, q_2) + \varepsilon H_1(p_1, q_1, p_2, q_2), \tag{21} \]

여기서,

\[ H_0(p_1, p_2, q_1, q_2) = -b p_1 + \frac{3}{2} p_2^2 - s p_2, \tag{22a} \]
\[ - p_1 (p_2 - p_1)(1 - \cos 2q_1), \]
\[ H_1(p_1, q_1, p_2, q_2) = \sqrt{2} f \sqrt{p_2 - p_1} \left[ (p_2 - p_1) \cos 3q_2 \right] \]
\[ + p_1 \cos (2q_1 + 3q_2) \]

좌표계 \( (p_1, q_1, p_2, q_2) \)를 아래와 같이 표준변환하기로 하자.

\[ x = \sqrt{2} p_1 \cos q_1, \quad y = \sqrt{2} p_1 \sin q_1, \]
\[ I = p_2, \quad \theta = q_2. \tag{23} \]

그러면 식 (20)과 해밀턴 함수는 다음과 같이 표현된다.

\[ \dot{x} = y (b + 2I - x^2 - 2y^2) + \varepsilon g_x + O(\varepsilon^2) \]
\[ = \frac{\partial H_0}{\partial y} + \varepsilon g_x + O(\varepsilon^2) \tag{24a} \]
\[ \dot{y} = x (b - y) + \varepsilon g_y + O(\varepsilon^2) \]
\[ = \frac{\partial H_0}{\partial x} + \varepsilon g_y + O(\varepsilon^2) \tag{24b} \]
\[ \dot{I} = \varepsilon (g' + O(\varepsilon)) \]
\[ = \frac{\partial H_0}{\partial I} + \varepsilon g' + O(\varepsilon) \tag{24c} \]
\[ \dot{\theta} = 3I - s - 2y^2 + \varepsilon g_\theta + O(\varepsilon^2) \]
\[ = \frac{\partial H_0}{\partial \theta} + \varepsilon g_\theta + O(\varepsilon^2) \tag{24d} \]

여기서,

\[ \varepsilon = \delta \omega_1 / 2 \gamma, \quad \delta f = \Lambda, \quad b = \beta / \gamma, \quad s = \sigma / 3 \gamma, \quad \tau = \gamma T_1. \]  

(26)
\[ g' = -cx + yby(I + x^2 + y^2) + \frac{f_2(I - x^2 - 2y^2)}{\sqrt{2I - x^2 - y^2}} \sin 3\theta \]
\[ + \frac{f_1(2I - x^2 - 3y^2)}{\sqrt{2I - x^2 - y^2}} \cos 3\theta, \]  
\[ = -\frac{\partial H}{\partial y} - cx + yby(I + x^2 + y^2) \]  
\[ g'' = -cy - 3ybxI - \frac{f_1(I - y^2)}{\sqrt{2I - x^2 - y^2}} \cos 3\theta \]
\[ - \frac{f_2(I - 2x^2 - y^2)}{\sqrt{2I - x^2 - y^2}} \sin 3\theta, \]  
\[ = -\frac{\partial H}{\partial x} - cy - 3ybxI \]  
\[ g^l = -2cl - ybx(I - y^2) + 3f_2y\sqrt{2I - x^2 - y^2} \cos 3\theta \]
\[ + 3f_1(I - y^2)\sqrt{2I - x^2 - y^2} \sin 3\theta \]
\[ = -\frac{\partial H}{\partial \theta} - 2cl - ybx(I - y^2) \]  
\[ g^g = \frac{f_1(3I - x^2 - 2y^2)}{\sqrt{2I - x^2 - y^2}} \cos 3\theta \]
\[ - \frac{3f_2y\sin 3\theta}{\sqrt{2I - x^2 - y^2}} = -\frac{\partial H}{\partial l} \]

\[ H_s(x, y, I, \theta) = \frac{3}{2} f^2 - sI \]
\[ - \frac{1}{2} y^2(2l - x^2 - y^2) - \frac{b}{2}(x^2 + y^2), \]  
\[ H_l(x, y, I, \theta) = \frac{f\sqrt{2I - x^2 - y^2}}{2L} (I^2 - y^2) \cos 3\theta - yx\sin 3\theta \]  

3. 비선동계(\(e = 0\))의 해석

제 (30)에 해당하는 비선동계의 해를 조사하기 위해 \(e = 0\) 로 두면, 다음과 같이 해밀턴 함수 \(H\) 가 \(H_s\)인 해밀턴 계가 된다.

\[ \dot{x} = y(b + 2l - x^2 - 2y^2), \]  
\[ \dot{y} = x(-b + y^2), \]  
\[ \dot{l} = 0, \quad \dot{\theta} = 3I - s - y^2. \]  

식 (27a)와 (27b)는 \(\theta\)와 무관하고, 식 (27c)에서 \(I\)가 상수라는 것을 알 수 있다. 따라서, 고정된 \(I\) 값에 대한 위상평면(\(x - y\) 평면)에서의 호름(flow)을 조사할 수 있다.

식 (19)와 (23)으로부터 다음의 조건이 성립함을 알 수 있다.

\[ x^2 + y^2 \leq 2l \]  

즉, 위상평면(\(x - y\) 평면)에서 반경이 \(\sqrt{2l}\)인 원의 내부에서의 호름만 조사하면 된다. 식 (27a)와 (27b)에서 고정점들(\(x = y = 0\))은 다음과 같다.

I. (0, 0),  
II. \((0, \pm \sqrt{I - t})\),  
III. \((\pm \sqrt{I + t}, \pm \sqrt{b})\).

여기서, \(l = -b/2\)이다.

\(b < 0\)인 경우, \(0 < I < I_1\)에서는 원점(I형)이 유일한 고정점이고, 안정점 해석에 의하면 이는 중심점이다. 분기선 \(I = I_1\)에서 원점은 \(y\)축상에 두 개의 고정점(II형)을 만들면서 자신은 안정성을 잃게 된다. \(I > I_1\)에서는 안정점이 원점과 두 개의 중심점이 존재한다.

\(b > 0\)인 경우, \(0 < I < I_1\)에서는 중심점의 원점과 \(y\)축상에 두 개의 안정점이 존재한다. 분기선 \(I = -I_1\)에서 \(y\)축상에 두 개의 고정점들은 각각 \(x^2 + y^2 = 2l\)인 원 상에 \(y\) 좌표가 동일한 두 개의 고정점(III형)을 만들면서 자신은 안정점을 지반한다. \(I > -I_1\)에서는 중심점의 원점, \(y\)축상에 두 개의 중심점과 \(x^2 + y^2 = 2l\)인 원 상에 네 개의 안정점이 존재한다.

Fig. 2 Global bifurcation diagram (\(I-b\) space) corresponding to the unperturbed system
Fig. 3 Global bifurcation diagram (x-y-I space) corresponding to the unperturbed system.

Fig. 2는 \( I \sim b \) 평면에서 대역분기구조를 나타낸 것으로 분기선과 각 영역에서 존재하는 고정점을의 종류를 보여준다. 아래점자 c와 s는 각각 중심점과 안정점을 나타낸다. Fig. 3은 (x, y, I) 공간에서 (a) \( b < 0 \) 와 (b) \( b > 0 \) 일 때 대역분기구조를 나타낸 것이다. \( b < 0 \) 이고 \( I > I_1 \) 인 경우, 호모クリニック계도가 존재하지만 본 연구에서는 이 경우만을 고려한다. 이 경우 중심점을 둘러싸고 원점에 연결된 양의 대칭 호모クリニック계도에서 \( H_0(x, y, I, \theta) = H_0(0, 0, I, \theta) \)이므로 식 (26a)로부터 다음과 같이 이 계도의 방정식을 얻게 된다.

\[
b(s^2 + y^2) + y^2(2I - x^2 - y^2) = 0
\]  

또한 이 경우에는 4 차원 위상공간 \((x, y, I, \theta)\)에서 다음과 같은 2 차원 불변다양체(invariant manifold) \( M_0 \) 와 3 차원 호모クリニック 다양체(homoclinic manifold) \( \Gamma \)가 존재한다.

\[
M_0 = \{(x, y, I, \theta) | x = 0, y = 0, I > I_1, \theta \in T'\}, \quad (31)
\]

\[
\Gamma = \{(x, y, I, \theta) | x = x^*(t, I), \ y = y^*(t, I), \ I > I_1, \ \theta = \int_0^s H_0(x^*(s, I), y^*(s, I), I)ds + \theta_0\} \quad (32)
\]

여기서, \((x^*(s, I), y^*(s, I))\)는 호모クリニック계도의 시간 \( s \)에 대한 표현이다. \( \Gamma \) 위의 임의의 채목은 \( t \to \pm \infty \)에 따라 \( M_0 \)로 접근한다. \( \theta_0 \in T' \)은 초기조건에 의해 결정되는 상수이다. 식 (27c, d)로부터 \( M_0 \) 위의 동역학은 다음과 같이 표현된다.

\[
i = 0, \quad \dot{\theta} = 3I - s. \quad (33)
\]

이 식에서 \( \dot{\theta} = 0 \)일 때의 \( I \)의 값, 즉 \( I \)의 공진값 (resonant value) \( I_r = \frac{s}{3} \)이다. \( I \sim \theta \) 평면에서 식 (33)의 호환은 원이 된다. \( I = I_r \)인 원은 공진점들로 구성되어 있고 \( I \neq I_r \)인 원은 주기궤도이다(Fig. 4).

Fig. 4 Flow in \((I, \theta)\) plane at \(x = y = 0\)

\[
I_r > I_1 \text{이어야함으로 다음과 같은 관계가 성립한다.}
\]

\[
s > -\frac{3}{2}b \quad (34)
\]

\((x, y)\)공간에서의 호모クリニック궤도는 4 차원 위상공간 \((x, y, I, \theta)\)에서의 해체모クリニック연결이므로 이 계목을 따라 불변다양체 \( M_0 \)를 따로 때와 되 돌아올 때 \( \theta \)값의 차이가 발생한다. 이 위상차(phase shift) \( \Delta \theta \)를 다음과 같이 정의하자.

\[
\Delta \theta = \theta(\pm \infty, I_r) - \theta(- \infty, I_r) \quad (35)
\]
\[ \Delta \theta \text{ 를 계산하기 위해서는 } I = I_r \text{ 에서 } \text{호모클리니크도에 대한 표현이 필요하다. 이러한 계산은 } (p_i, q_i) \text{ 를 이용하는 것이 보다 용이하므로 } \text{식 (20a)와 (20b)에서 } \varepsilon = 0 \text{ 일 경우를 고려하자.} \]

\[ \dot{p}_i = 2p_i(I_r - p_i) \sin 2q_i = \frac{\partial H}{\partial q_i}, \quad \text{(36a)} \]

\[ \dot{q}_i = -b - (I_r - 2p_i)(1 - \cos 2q_i) = \frac{\partial H}{\partial p_i}. \quad \text{(36b)} \]

여기서,

\[ H(p_i, q_i) = -bp_i - p_i(I_r - p_i)(1 - \cos 2q_i) \quad \text{(37)} \]

식 (36)에서 \( q_i \) 은 \( \pi \) 의 주기를 가지므로 \( 0 \) 에서 \( \pi \) 까지만 고려하자. 따라서, 식 (36)은 다음과 같은 고정점을 가진다.

중앙점 \((\tilde{p}_i, \pi/2)\),

중앙점 \((0, \tilde{q}_i), (0, \pi - \tilde{q}_i)\)

여기서,

\[ \tilde{p}_i = \frac{1}{4}(2I_r + b), \quad \tilde{q}_i = \frac{1}{2} \cos^{-1} \left( \frac{1 + \frac{b}{I_r}}{2} \right). \quad \text{(39a, b)} \]

\[ \text{Fig. 5 Phase portrait in } (p_i, q_i) \text{ plane when } I > I_r \]

좌표계 \((x, y)\)에서 호모클리니크도 \(A_1\)은 좌표계 \((p_i, q_i)\)에서 하트로클리니크도 \(A_1\)으로 나타난다 (Fig. 5). 하트로클리니크도 \(A_1\)에서 \( t \rightarrow -\infty \)와 \( t \rightarrow \infty \) 일 때 \( q_1\)의 좌표는 각각 \( q_1(-\infty) = \tilde{q}_i \), \( q_1(\infty) = \pi - \tilde{q}_i \)이다. 이러한 하트로클리니크도 \(A_1\)은 \( H(p_i, q_i) = H(0, \tilde{q}_i) \)으로서 식 (37)로부터 다음과 같이 표현된다.

\[ p_i = I_r + \frac{b}{1 - \cos 2q_i}. \quad \text{(40)} \]

식 (40)을 (36b)에 대입하면 다음과 같다.

\[ \dot{q}_i = 2I_r(\cos 2\tilde{q}_i - \cos 2q_i) \quad \text{(41)} \]

식 (20b)와 (20d)에서 \( \varepsilon = 0 \)으로 두고 두 식을 더한 후, 식 (40)과 \( I = I_r \)를 대입하면 \( \dot{q}_1 + \dot{q}_2 = 0 \)인 결과를 얻는다. 식 (23)에서 \( q_2 = \theta \) 이므로, \( \varepsilon = 0 \)일 때 \( I = I_r \)에서 \( \theta = -\tilde{q}_i \)이다. 이로부터 식 (35)에 정의된 위성자들은 다음과 같이 계산할 수 있다.

\[ \Delta \theta = -q_1(\infty) + q_1(-\infty) = 2\tilde{q}_i - \pi. \quad \text{(42)} \]

4. 섭동계 \((\varepsilon \neq 0)\)의 해석

부분공간(subspace) \((x = y = 0)\)은 섭동후 \((\varepsilon \neq 0)\), 불변다양체가 아니지만, \( M_0 \)에 충분히 가까운 \( M_\varepsilon \)는 국소불변다양체(local invariant manifold)로서 다음과 같다.

\[ M_\varepsilon = \{(x_\varepsilon, y_\varepsilon, I, \theta) | x_\varepsilon(I, \theta) = 0 + \varepsilon x_1(I, \theta) + O(\varepsilon^2) \}, \quad I > I_r, \quad \theta \in T^1 \quad \text{(43)} \]

\( M_\varepsilon \)에서의 호름은 식 (24c)와 (24d)의 \( x \)와 \( y \)에 각 각 식 (43)에서 정의된 \( x_\varepsilon \)과 \( y_\varepsilon \)를 대입함으로써 다음과 같이 주어진다.

\[ \dot{x}_\varepsilon = -2\varepsilon l + 3\sqrt{2} \pi^{3/2} \sin 3\theta + O(\varepsilon^3) \quad \text{(44a)} \]

\[ \dot{\theta} = 3I - s + \varepsilon \frac{3f}{\sqrt{2}} \sqrt{I} \cos 3\theta + O(\varepsilon^3) \quad \text{(44b)} \]

\[ I = I_1 + \sqrt{\varepsilon} \tau, \quad \tau = \tau/\sqrt{\varepsilon}. \quad \text{(45)} \]

여기서 \( \tau \)는 \( \tau \)보다 느린시간을 나타낸다. 위 식을 이용하면, \( I \), 근방에서 \( M_\varepsilon \)에서의 호름은 다
음과 같이 표현된다.

\[ h' = -3\sqrt{2} f_1^{1/2} (K_1 - \sin 3\theta) + \sqrt{2} G(h, \theta) + O(\varepsilon) \quad (46a) \]

\[ \theta' = 3h + \varepsilon F(h, \theta) + O(\varepsilon) \quad (46b) \]

이기서,

\[ K_1 = \frac{\sqrt{2\varepsilon}}{3f_1^{1/2}}, \quad F(h, \theta) = \frac{3f_1^{1/2}}{\sqrt{2}} \cos 3\theta \]

\[ G(h, \theta) = -\frac{3f_1^{1/2}}{\sqrt{2}} h(2K_1 - 3\sin 3\theta) \]

이고, 프라임은 \( \varepsilon \) 에 대한 미분을 나타낸다. 식 (45)는 \( \varepsilon = 0 \) 일 때, 다음과 같은 해밀턴 함수를 가지는 해밀턴 레이이나.

\[ L(h, \theta) = \frac{3}{2} h^2 + \sqrt{2} \psi^{1/2} (3K_1 \theta + \cos 3\theta) \quad (47) \]

![Diagram](attachment:image.png)

Fig. 6 Dynamics on \((I, \theta)\) plane in the neighborhood of \(I = I_c\) for \(x = y = 0\).

섭동정의 계\( h' = -L_\theta, \ \theta' = L_x \)는 \(|K_1| \leq 1\)인 경우 다음과 같은 두 개의 고정점을 가진다(Fig. 6).

\[ p_o = (0, \theta_o), \quad q_o = (0, \theta_o) \quad (48) \]

여기서, \( \theta_o = (1/3)\sin^{-1} K_1, \quad \theta_o = (1/3)(\pi - \sin^{-1} K_1 \]

이고, \( \theta = 2\pi/3 \)의 주기를 가지므로 \(-\pi/6\)에서 \( \pi/2 \)까지만 고려하였다. 섭동 후, 안장점 \( q_o \)는 역시 안장점의 \( q_o \)이 되고, 중심점 \( p_o \)는 흡입점

\( \text{(sink)} \)\( p_o \)이 된다. 안장점 \( q_o \)을 연결하는 호모클리니체로 내의 취화체들은 섭동 후에 계이어짓고 이 영역은 근사적으로 \( p_o \)의 흡인영역을 나타낸다. \( q_o \)을 연결하는 호모클리니체로는 \( L(h, \theta) = L(0, \theta) \)

에 의해 표현된다. \( I \), 근방\( \text{(neighborhood)} \)에서 \( M_x \)상의 동역학 관식이 있으므로 \( I \)의 근방은 \( A_x \)

으로 다음과 같이 정의하자는다.

\[ A_x = \{ (x, y, h, \theta) | x = 0, y = 0, |h| < \alpha C, \theta \in T^1 \} \quad (49) \]

여기서, \( C \)는 근방이 섭동정의 호모클리니체로 포함할 만큼 충분히 큰 0보다 큰 상수이다. \( A_x \)의 안정한 다양체 \( W^s(A_x) \)와 불안정한 다양체

\( W^u(A_x) \)는 각각 \( M_x \)의 안정한 다양체 \( W^s(M_x) \)와 불안정한 다양체 \( W^u(M_x) \)의 부분집합(subset)이다.

4 차원 위상공간에서 \( A_x \)을 뽑아보면 \( p_o \)을 빼

난 체적이 \( A_x \)로 돌아와서 실니코프형 호모클리

니체로를 만들 수 있다. 이러한 움직이가 존재하려

면 2 개의 조건을 만족해야 한다[4]. 고차원 멘

코프 이론(higher dimensional Melnikov theory)을 이

용하여 \( W^s(p_o) \cap W^u(A_x) \neq \emptyset \)인 조건을 발견한다.

이는 \( p_o \)을 떠나는 움직이가 \( A_x \)으로 돌아오는 조건

을 의미한다. 두번째 조건은 \( p_o \)을 떠나 \( A_x \)으로

돌아오는 움직이가 \( A_x \) 내의 \( p_o \)의 흡인영역으로 돌

아와야 한다는 것이다. 그러면 그 움직이는 \( A_x \) 내에

서 시간이 정확한에 따라 \( p_o \)에 접근적으로 접근

하게 되며 그림과 같은 \( p_o \)을 떠나 \( p_o \)으로 돌아

오는 실니코프형 호모클리니체로가 완성된다.

첫 번째 조건은 두 다양체 \( W^s(p_o) \)와 \( W^u(A_x) \)


\[ M^s = \int \left[ \frac{\partial H_2}{\partial x} g^x + \frac{\partial H_2}{\partial y} g^y + \frac{\partial H_2}{\partial t} g^t \right] dt \quad (50) \]

여기서, 피적분함수는 \( I = I \), 에서 \( \Gamma \) 상의 임의의
위치에서 계산된다. \( H_{0}, g^{1}, g^{2}, g^{3} \) 는 식 (25)에 주어져 있다. 이를 대입하면, 식 (50)은 다음과 같이 정리될 수 있다.

\[
M^{1} = \sqrt{2} \beta \gamma \left[ 3K_{1}(\theta - \theta_{0}) + \cos 3 \theta_{0} - \cos 3 \theta_{e} \right] = 0 \quad (55)
\]

이로부터 \( \theta_{0} \) 를 구할 수 있다. \( \beta \neq 0 \) 이므로 식 (54)는 \( \theta_{0} \) 를 \( K_{1} \)에 대해 표현하고 정리하면 다음과 같다.

\[
-\sqrt{1 - K_{1}^{2}} + 3K_{1}(\theta_{0} - K_{1}) \sin^{-1} K_{1} + \cos 3 \theta_{0} = 0 \quad (56)
\]

\[
 M^{1} = \sqrt{2} \beta \gamma \left[ 3K_{1}(\theta - \theta_{0}) + \cos 3 \theta_{0} - \cos 3 \theta_{e} \right] = 0
\]
가 존재하는 $K_2$의 범위는 곡선 $C_2$에 의해 근사적으로 주어진다. 그리고 이에 상응하는 $K_1$은 Fig. 7로부터 구하여질 수 있다.

![Fig. 9 Plot of $\theta_* + \Delta \theta$ as a function of $K_2$.](image)

5. 결론

일례일 내부공진을 가진 불완전원판의 저조화 곡선 응답에 대한 대역분기해석을 수행하여 실시간프로 페이터 클러닉제도가 존재하는 조건을 발견하였다.

불완전원판의 비감쇠 자유진동의 운동방정식의 감쇠와 가중을 가한 후, 갤러진 방법으로 연립 상호간방정식을 구하고 가산진동수가 고유진동수의 3 배에 가까운 푸광능을 가정하였다. 다중시간을 적용하여 자율 상호간방정식을 구하고 Kovačič과 Wiggins의 대역분기해석방법을 수행하였다.

참고문헌

(18) 이전정, 장서일, 2003, "강재진동특성 평판의 이동과와 관련한 비선형동역학, 한국과학회관 특정기초연구 결과보고서"