유한요소법에 의한 흡음재 음향특성 연구 및 검증
Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification

정현익** · 김관주* · 박진규** · 김상현***
HwanIl Jung, KwanJu Kim, JinKyu Park, SangHun Kim

Key Words : 투과손실(Transmission Loss), 흡음율(Absorption coefficient), Biot 변수(Biot’s parameters), 유한요소법(Finite Element Method)

ABSTRACT

Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

1. 서 론

소음공해의 인식이 널로 다해가며 따라서 사람이 주거하는 공간이나 작업하는 공간에서의 소음을 감소시키는 요구는 증대되고 있다. 흡음재는 이와 주변에서 음향 분산 수 있는 빛과음은 바로 이런 취지에서 설계되고 설치 되는 것이며, 방음재 안에 설치된 흡음재는 방음재의 성능을 향상시킬 수 있는 작용적인 요인이 된다. 또한 조용한 자동차를 원하는 수요자의 요구를 만족하기 위하여 차내 실내에서의 흡음재, 차음재의 역할은 증가 추세에 있다. 본 연구는 이러한 응용 재질의 특성 중 대표적인 흡음, 차음 특성을 유한요소법을 이용하여 예측하는 연구를 수행하였다. 본 연구는 이러한 흡음재의 성능을 정확히 측정하고 예측함으로써 우수한 성능의 흡음재를 선택하고 효과적으로 적용하는데 목적이 있다. 흡음재의 성능에 대한 해석은 실험에 의한 Biot Parameter 측정을 수행하고, 이 생략에 의한 LMS 소음 유한 요소해석 프로그램인 SYNOISE 와 VIOLINS를 이용하여 흡음율과 투과 손실 성능을 예측하였으며, 2-microphone 방법에 의한 관련 실험 항목과 비교 분석하였다. 본 연구에서 선택한 시험은 SK의 SKY VIVA와 NVH Korea 사의 PET을 선택해 실험 및 해석을 수행하였 다.

* 홍익대학교 기계시스템디자인공학부 교수
E-mail : kwanju@hongik.ac.kr
tel : (02) 336-1643 fax : (02) 320-1113
** 홍익대학교 기계공학과 대학원
*** 산업기술시험원

1. 본 론

2.1 흡음재의 Biot Parameter의 측정

실험을 통해 측정된 Biot Parameter는 흡음재의 흡음율 및 투과손실을 예측하기 위한 변수이며 LMS 소음 SYNOISE와 VIOLINS에 필수 입력사항이다. Biot 변수에는 다음 4가지가 있다.

(1) Flow Resistivity

유동저항은 Biot Parameter의 하나로서 물질의 소음전도 특성을 규정하고자 할 때 쓰이는 변수이다. 유동저항의 측정은 일정한 공기의 유량을 시험에 통과시키면서 대기압으로 방출될 때 시험에 걸리는 압력과 대기압의 압력차를 이용해 서 구한다. 유동저항 측정에 관한 변수는 시험의 두께와 넓 이가 되고 그와 관련된 식은 다음과 같다.
\[
\sigma = \frac{\Delta P A}{Q t}
\]

(1)

단위는 MKS이며 유동저항의 단위는 MKS Rayls가 된다.

(2) Tortuosity
Tortuosity는 소재에 가해진 흐름의 가진 입력에 대한 동적 응답을 결정짓는 중요한 변수이다. 특히 정상성 소재의 재진성능, 다공성 소재의 응향학적 가동 등을 예측하는데 있어서 매우 중요한 인자이다.

(3) Porosity
Porosity는 Flow Resistivity, Tortuosity 등과 함께 다공성 흐름을 소재의 흐름률, 투과손실, 삽입손실과 같은 응향학적 성질을 결정짓는데 중요한 인자로써 Biot이 투과손실 계산을 위해 제안한 방법에 입력되는 변수이다. 또한 Porosity는 소재의 진밀도(True Density)의 측정에도 이용된다.

\[
True\ Density = \frac{Mass}{(1 - Porosity)(Apparaent\ Volume)}
\]

(2)

(4) Specific Density
다공성 물질에서 공기차차지하고 있는 부분을 제외한 프레이임 밀도를 말하는 것으로서 흐름률과 투과손실 계산에 있어서 영향을 미친다.

다음은 선택된 두 시편의 Biot Parameter이다.

표1 Biot's Parameters of SK SKY VIVA, PET

<table>
<thead>
<tr>
<th></th>
<th>SK SKY VIVA</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Resistivity</td>
<td>17000</td>
<td>11000</td>
</tr>
<tr>
<td>(MKS Rayls)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porosity</td>
<td>0.9813</td>
<td>0.9927</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Specific Density(kg/m³)</td>
<td>35</td>
<td>30</td>
</tr>
</tbody>
</table>

2.2 흐름률에 대한 실험 및 해석

(1) 흐름률 실험
두께 60mm인 SK社의 SKY VIVA와 두께 20mm인 PET을 선택하여 실험을 수행하였다. 시편의 작정에 따라 주파수 측정영역이 다르고 각각 3번씩 실험 후 평균값을 계산했다. 측정장비로는 B&K의 임피던스 투브 TYPE 4206을 사용했다. 실험에 있어서 시편 작정에 따른 주파수 측정 범위는 다음과 같다.

표2 Valid Frequency Range of Specimens

<table>
<thead>
<tr>
<th>Set up</th>
<th>Freq. Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mm Set up</td>
<td>50 Hz ~ 1.6 kHz</td>
</tr>
<tr>
<td>29 mm Set up</td>
<td>500 Hz ~ 6.4 kHz</td>
</tr>
</tbody>
</table>

두 개의 마이크로폰을 이용한 흐름률 측정은 Stationary Random Signal 이 입사등분 P1과 반사등분 P2로 분리되며 이것은 투브 백에 위치한 두 개의 마이크로폰에 의해 측정된 응답의 관계로부터 주파수 전달함수를 계산함으로써 얻어진다.

![Fig.1 실험장치 개요](image)

\[
P_1 = (A e^{-\beta s_1}) + (B e^{\beta s_1}) e^{j\omega t}
\]

(3)

\[
P_2 = (A e^{-\beta s_1}) + (B e^{\beta s_1}) e^{j\omega t}
\]

(4)

\[
H_{21} = \frac{A e^{-\beta s_1} + B e^{-\beta s_1}}{A e^{\beta s_1} + B e^{\beta s_1}}
\]

(5)

\[
R = \frac{H_{21} e^{\beta s_1} - B e^{\beta s_1}}{e^{\beta s_1} - H_{21} e^{\beta s_1}}
\]

(6)

\[
\frac{1+R}{\rho c} = 1 - R^2
\]

(7)

\[
s = 1 - \mid R^2 \mid
\]

(8)

(2) 흐름률 해석

· Delany-Bazley 의한 흐름률 예측식
Delany 와 Bazley는 공극률이 1에 가까운 실유체의 전파속수와 특성 엑티디스를 측정하여 이들 인사가 주파수와 재료의 유동 비저항의 함수로 표현될 수 있음을 밝혀냈다. 이로부터 다음과 같은 경험식을 개발하였다.

\[Z_c = \rho(1 + 0.0571 X^{-0.754} - 0.087 X^{-0.752}) \]
(9)

\[k = \frac{\phi}{c}(1 + 0.0787 X^{-0.700} - 0.189 X^{-0.595}) \]
(10)

\[X = \frac{6f}{c}, \ \omega = 2\pi f \]
(11)

Delany-Bazley 실험 결과에서 X의 값이 1과 1 사이에 있어야 하며 X 값을 구하면 다음 식을 이용해서 표면 엑티디스를 구할 수 있다.

\[Z = -j Z_c \cot(k \cdot d) \]
(12)

・Allard 의한 흡음률 예측식

Allard 식에서는 Flow Resistivity, Tortuosity, Porosity 등의 함수로 구성이 되고, 이 변수를 이용하여 엑티디스를 구한다.

\[Z = -j \frac{Z_c}{\phi} \cot(k(\omega)d) \]
(13)

\[k(\omega) = \omega \sqrt{\frac{\rho(\omega)}{K(\omega)}} \]
(14)

\[\rho(\omega) = \rho_0 \alpha_\infty \left(1 + \frac{\sigma}{j\alpha_\infty \rho_0 \omega} \right)^{-1} \]
(15)

\[K(\omega) = \gamma P_0 \left[\frac{\sigma}{j\alpha_\infty \rho_0 N_\infty \omega} \right]^{-1} \]
(16)

2.3 SYSNOISE 모델링과 흡음률 해석

SYSNOISE 해석을 위해서 유한요소법을 이용해 오른쪽 꼭대기에 두께에 따른 흡음률을 위치시키고 측정장비와 동일하게 공기충을 주어 공기충에서의 음압을 이용해 해석하였다. Sound Source 조건으로는 모델링 왼쪽 꼭 부분에 Velocity를 1로 주어 해석했으며 2차원 모델링으로 해석을 수행하였다.

실험에서 시편의 직경이 23mm와 100mm 수평에 따른 측정가능 주파수 영역이 다르므로 다음 식에 의해 주파수 영역을 정의할 수 있고,

\[L - d \ll \frac{3}{4} \lambda \]
(17)

\[d \ll \frac{1}{2} \lambda \]
(18)

측정가능 주파수 대역은 283 Hz ≤ f ≤ 5862 Hz 가 된다.

Fig.2 SYSNOISE 2차원 모델링

Fig.3 PET_SYSNOISE 해석과 실험의 흡음률 비교

앞에서의 흡음률 예측식에서 시편의 두께와 유동저항의 값을 입력 후 다음과 같은 결과를 나타낼 수 있다. PET 는 거의 0.9 에 가까운 흡음률을 보인다.

Fig.4 SK SKY VIVA_SYSNOISE 해석과 실험의 흡음률 비교
2.4 투과손실 (Transmission Loss)

(1) 투과손실 실험

투과손실 실험 또한 흡음체 측정 실험과 동일한 방법으로 측정했으며, 시편의 직경에 따른 주파수 측정범위는 위의 표2와 같다. 측정장비로는 B&K 4206T의 Transmission Loss Kit를 사용했으며, 각각 시편에 대해 3번 실험 후 평균값을 사용했다.

(2) 투과손실의 정의

투과손실은 흡음체를 통해 입식되는 음압과 투과된 음압을 이용해서 다음과 같이 계산된다.

\[TL = 10 \times \log_{10} \left(\frac{P_1}{P_i} \right)^2 \] \hspace{1cm} (23)

2.5 VIOLINS 모델링과 투과손실 해석

VIOLINS 모델링에서는 시편 자체를 유한요소법으로 3차원 모델링 했다. 공기층과 접하는 면을 제외한 모든 부분은 Impervious 조건을 형성시키고, 공기와 접하는 Face에 1이라는 값으로 가진 조건을 적용시켰다. VIOLINS 에서는 좀 더 다양한 Biot 변수가 입력이 되고 정리하면 다음과 같다.

<table>
<thead>
<tr>
<th>Biot's Parameters</th>
<th>SK SKY VIVA</th>
<th>PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Resistivity (MKS Rayls)</td>
<td>17000</td>
<td>11000</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.9813</td>
<td>0.9927</td>
</tr>
<tr>
<td>Tortuosity</td>
<td>1.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Specific Density (kg/m³)</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>Young Modulus</td>
<td>140000</td>
<td>135000</td>
</tr>
<tr>
<td>Poission Ratio</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Fluid Density (kg/m³)</td>
<td>1.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* Taken from VIOLINS Library

Fig.5 VIOLINS 모델링

Fig.6 PET VIOLINS 투과손실 해석

Fig.7 SK SKY VIVA 투과손실 해석
VIOLINS에서는 보다 다양한 Biot Parameter가 변수로
입력이 된다. 해석에 있어서 다양한 조건 형성이 요구되므로
정확한 실험 결과가 요구되며, 특히 해석에 있어서 Young
Modulus나 Poisson Ratio의 변화에 대한 투과손실 결과
는 미미하지만 Flow Resistivity와 Specific Density 혹은 모델링의 경계조건에 따라 단감하게 나타난다.

3. 결론

흡음재의 성능은 흡음재 자체의 Biot parameter에 의해
결정이 되어 진다. 특히 Flow Resistivity와 Density는 흡
음을과 투과손실에 있어서 전제적인 영향을 미쳤고,
Tortuosity와 Porosity는 고 주파수 영역에서 특징을 보여주
았다. 흡음재는 소음자산에 있어서 경제적인 접근이 용이하
고, 근래 개발되는 흡음재는 친환경적 소재로 재가이 되어지
므로 많이 사용되어 진다. 각기 다른 주파수 영역별의 흡음
제 적응구조 또한 우수한 성능을 기대할 수 있다. 이번 연
구로 단순히 흡음재의 성능에만 둘만 아니라 좀 더 많은 분
야에 응용할 수 있을 것이다.

참고 문헌
(1)F.Allard,1993 "Propagation of Sound in Porous
Media-Modelling Sound Absorbing Materials"
(2)한국과학기술원 소음 및 진동제어 연구센터,1999
"KAIST WORKSHOP-Noise Control Materials: Properties
and Effective Use"
(3)K.U.Ingard "Note on Sound Absorption Technology"
,1994-Version 94-02