간이 차음시험장치 개발

Development of a Simplified Test Apparatus for Measuring Sound Transmission Loss

이해성** · 전오성*** · 강현주*** · 김봉기***

Hea-Sung Lee, Oh-Sung Jun, Hyun-Ju Kang, Bong-Kee Kim

Key Words: Simplified Test Apparatus(간이 차음시험장치), Sound Insulation Performance(차음성능),

ABSTRACT

This study deals with the performance of a simplified test apparatus for measurement of sound insulation of panels. In order to investigate its performance, results from experiment and theory of the sound transmission loss for single and double panels are compared. Comparative results show that in evaluation of the sound insulation performance, the test apparatus has a cumbersome problem at the low frequency region, i.e. below 315 Hz, presumably because of the poor diffuse sound field in the chambers. Meanwhile at the high frequency, it shows a considerable results comparable to the theoretical prediction. One of the objective of this study that compares measured results between a real reverberation chamber and a simplified test apparatus, using a specimen of a sandwich panel. It shows qualitatively reasonable agreement from which one can find a potential to provide a design tool.

1. 서론

선박이나 일반건축물에서 실내소음저감을 위하여 널리 사용되는 소음계와 요소로 차음계가 있다. 이 차음계의 성능은 차음손실(sound transmission loss)로서 표시되며 이의 계측 방법은 ISO[1], ASTM[2], KS[3]등 국내외의 관련규격에 의하여 규정되어 있다. 이러한 규격들은 공통적으로 2개의 간장성을 이용하며, 시험의 면적은 10 m² 이상이 되도록 규정하고 있다.

따라서 차음계를 개발함에 있어 가장 큰 현실적 어려움은 큰 면적의 시험에 따른 비용과 인력의 투입이다. 일반적으로 판넬의 시험품 1개를 개발하는데 있어서 보통 수년의 실험이 요구되며 이로 인하여 만만치 않은 개발비용과 시간이 소모된다.

이러한 어려움을 해결하기 위하여 소형 간지 간장실로서 상대적으로 작은 면적의 시험을 이용하여 차음성을 계측하려는 일련의 시도들이 있었다. 그 중 하나로 차음 계측사의 경우 자동차용 내장재의 차음성능을 시험하기 위하여 간

2. 간지 간장실을 이용한 실험

2.1 간지 간장실의 제원

가능한 증여한다. 정해지는 공간 내에서의 일종의 고유모드로서 서로 정립된 백면사이의 한 위치에서 음파의 입사 및 반사가 중첩 혹은 상쇄되어서 발생하는 파동현상을 말한다. 따라서 실내의 경계면들이 가능한 서로 정립하지 않도록 배치해야 한다. Fig. 1은 이러한 개념 하에서 설계된 간이 차음시험장치의 개념도를 나타내고 있다.

![Fig. 1 Schematic illustration of a simplified test apparatus.](image)

간이 차음시험장치는 MDF(t=18.6 mm)판을 이용하여 제작하였고, 전방향의 외부는 P-U foam과 나이 클림된 차음판으로 보강하였으며 전방향의 공간에 철판 6 mm를 덧붙였다. 소음원실(source room)의 총면적은 10.79 m², 부피는 2.43 m³이며, 수음실(receiving room)의 총면적과 부피는 각각 12.04 m², 2.87 m³이다. 또한 시험 설치부의 시험 크기는 0.6 x 1 m²이다.

![Fig. 2 Interior of simplified test apparatus.](image)

Fig. 2는 간이 차음시험장치의 실 내부 모습으로 두 방 사이에 Glass (5 mm) 시편이 설치되어 있는 사진이다. 시편 설치부는 두 전방향 사이에 폭 25 mm의 철제 프레임을 설치하고 볼트로 고정하였다.

2.2 실험 방법
차음성능의 평가는 일반 전방향과 마찬가지로 다음과 같은 식을 이용하여 평가하였다.

\[STL = L_{p1} - L_{p2} + 10 \log(S/A) \] (1)

여기서 \(L_{p1}, L_{p2}\): 각각 소음원실과 수음실의 공간 평균 음압 레벨 (dB ref 20 micro Pa), \(S\): 시편 면적=0.6x1 (m²), \(A\): 수음실의 등가 홍음 면적(m²)이다. (1)식에서 실내 공간 평균 음압레벨은 6 치정의 계측을 평균하여 산정되었다. 또한 \(A\)은 \(A = 0.16 \times V / T_{60}\)식에 의해서 산정된다. 여기서 \(V\)는 수음실 용적(m³), \(T_{60}\)은 섬광시각을 나타낸다.

3. 간이 전방향의 성능
본 연구에서 사용된 시편은 먼저 질량법칙(mass law)을 잘 따르며 쉽게 예측할 수 있는 시편으로 Table 1에 표시된 유리와 철판을 선택하여 실험을 수행하였다. 질량법칙(mass law)는 다음 식으로 표현된다.

\[TL = 20 \log(m) + 20 \log(f) - 47, \text{ dB} \] (2)

그리고 체중적으로 전방향에서 실제 측정한 시편의 샌드 위치를 실험하여야 간이 차음시험장치의 실험 결과와 비교하였다.

Table 1 Material properties of specimen.

<table>
<thead>
<tr>
<th>specimen</th>
<th>t(mm)</th>
<th>E(N/m²)</th>
<th>density(kg/m³)</th>
<th>Possion ratio</th>
<th>loss factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>steel</td>
<td>4</td>
<td>2.1e11</td>
<td>7583</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.1e11</td>
<td>8228</td>
<td>0.3</td>
<td>0.02</td>
</tr>
<tr>
<td>glass</td>
<td>5</td>
<td>7.0e10</td>
<td>2383</td>
<td>0.22</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7.0e10</td>
<td>2305</td>
<td>0.22</td>
<td>0.06</td>
</tr>
</tbody>
</table>

3.1 간이 전방향의 확산음장 평가
실내음장이 이상적인 확산음장이라면 음압분포는 균일하지만 실제 음장에서는 특정 위치별로 음압의 차이가 존재하고 특히 거주자수 영역에서 더욱 심한 차이가 난다. 음압분포가 균일하지 않으면 (1)식의 \(L_{p1}, L_{p2}\)을 산정할 때 오차가 발생한다. 불균일 음압분포의 주 원인은 형태와 실제 음장의 고유모드에 기인하며, 실음장의 고유모드는 소음원의 위치에 따라 다르게 된다. 따라서 소음원 위치변화를 보기 위해서 소음원의 위치를 Fig. 1에 도시한 것처럼 speaker 1과 speaker 2 및 두개의 speaker를 동시에 작동한 것으로 구분하여 계측하였고, 간이 전방향의 확산음장을 평가하기 위하여 수음실과 소음원실의 6 지점에서 음압분포를 측정하였다.
결과와 이론 예측을 비교하였다.

예측치는 시험을 위한 단면[7]으로 가정하여 예측한 결과이다. 단면의 투과계수, \(\tau(\phi, \omega) \)는 다음과 같다.

\[
\tau(\phi, \omega) = \left| \frac{p_1}{p_i} \right|^2 = \left| 1 + \frac{Z\cos\phi}{2\rho_s c_s} \right|^2
\]

여기서 \(\phi \) = 입사각, \(\omega \) = 각 주파수, \(p_i, p_1 \) = 투과 및 입사파의 진폭, \(Z = \) 판의 임피던스, \(\rho_s, c_s = \) 공기의 밀도 및 속도를 나타낸다. 즉 단면의 차음특성은 판의 임피던스로 표현할 수 있다.

보통의 경우 판을 밑판(thin plate)으로 간주하면 단면의 임피던스는 다음과 같이 근사화 된다.

\[
Z \approx j \left(\omega m - \frac{\omega^2 D \sin^4\phi}{c_s^4} \right)
\]

여기서 \(D = D_r(1 + j\eta) \)로서 \(D_r \) = 콜럼진장 (Nm²/m), \(\eta \) = 판의 손실계수를 나타내며, \(m \) = 강판의 면밀도(㎏/m²)를 표시한다.

\[
f_c = \frac{c_s^2}{2\pi \sin^2\phi} \sqrt{\frac{m}{D}}
\]

(5)식은 일치추파수(coincidence frequency)를 나타낸 식으로 입사파의 추적파수(trace wave number)와 판의 곡률 파수(bending wave number)가 일치할 때 발생하는 공진 현상이다.

중공 이중판의 경우 투과음파와 입사음파의 진폭비는 다음과 같다.

\[
P_2 = \frac{-2j(kd_2 \sec\phi)^2}{Z_2 + \cos\phi} \left(\frac{\rho_s c_s}{kd_2 \sec\phi} \right) = \frac{\rho_s c_s}{kd_2 \sec\phi}
\]

여기서, \(d = \) 공진충의 두께, \(Z_{1,2} \) = 각 판의 음향 임피던스, \(k = \) 파수(number of wave)를 의미한다.

(6)식의 분모가 최소 즉 0에 근사할 때에도 공진현상이 발생한다. 이것은 다중판에서만 나타나는 현상으로 각 표면계가 중첩에 대하여 그계가동을 하고, 중심지는 스프링 과 막판의 역할을 하는 경우이다. 이때 차음손실은 공진(dip) 을 보인다. 이때의 주파수를 mass-spring-mass 공진 주파수라고 말한다. 이 공진 주파수에 대한 근사식은 다음과 같다.

\[
f_c = \frac{1}{2\pi \cos\phi} \left(\frac{\rho_s c_s^2}{d} \frac{m_1 + m_2}{m_1 m_2} \right)^{1/2}
\]

여기서 \(m_1, m_2 \)는 강판의 면밀도(㎏/m²)를 나타낸다.

투과계수 \(\tau(\phi, \omega) \) 및 각각에 대한 평균투과계수
\[\tau(\omega), \text{차음손실\text{\textit{transmission loss, TL}}\text{은 다음과 같이 정의한다.}} \]

\[\tau(\phi, \omega) \equiv \frac{P_2}{P_1} \]

\[\tau(\omega) = \frac{\int_{0}^{\phi_m} \tau(\omega, \phi) \cos \phi \sin \phi \, d\phi}{\int_{0}^{\phi_m} \cos \phi \sin \phi \, d\phi} \]

\[TL = 10 \log \left[\frac{1}{\tau(\omega)} \right] \]

Fig. 4와 5는 간이 차음시험장치 계측치와 예측치를 비교한 것이다. Speaker 1과 2는 Fig. 1에 나타난 울림의 위치에서 각각의 음의 투과손실을 측정한 것이고, Speaker 1&2는 음을 두 위치에서 동시에 작용시켜 계측한 음의 투과손실을 나타낸 것이다.

Fig. 4 Comparison of sound transmission loss between the measurement in a simplified test apparatus and prediction; specimen = 4 mm steel.

비교 결과를 보면 Fig. 3에서 나타난 315 Hz 이하 저주파수에서의 음압판정치가 그대로 간이 차음시험장치의 실험결과에 반영되어 나타났다. Fig. 4와 5에서 315 Hz 이하의 저주파수대역을 제외하고는 예측치와 비슷하게 나타나고 있다.

특기할 만한 사항으로서 Fig. 4 및 5를 보면 일치점수가 이전의 고주파수에서는 예측치보다 계측치가 높게 나타난다. 이 현상에 대해 다음과 같이 추론한다. 단면의 차음 특성은 일치점수의 변화로서 수직임시(\(\phi = 0^\circ\))의 경 우에 차음성능이 가장 크며 수평임시(\(\phi = 90^\circ\))로 갈수록 감소한다. 따라서 이상적인 확산음장이 아닌 경우, 즉 판에 수평임시 에너지분이 작거나 심지어는 무시되는 경우 계측치는 이론치보다 크게 된다.

전 사항과 일관된 현상으로서 이론적 일치점수가 계측에서 나타난 일치점수 사이에 차이가 있다. 예로서 Fig. 5를 보면 예측치는 \(f_c = 25\ kHz\)이지만 계측치는 3.15 kHz에서 끌(dip)이 나타나고 있다. 이유에 대한 설명으로서 \(f_c\)에 관한 (5)식을 보면 이론적으로는 수평임시(\(\phi = 90^\circ\))일 때 일치점수가 나타나지만 앞서 언급했듯이 수평임시점은 기존 성분들이 무시되지만 일치점수가 일체 측 상대적으로 고주파수에서 나타나게 된다. 계측에서 나타난 현상을 봐 보면 일차가 \(\phi = 70^\circ\) 이상의 성분은 무시되고 있는 것으로 보인다. 그러므로 (9)식의 일차상각각 \(\phi_{in}\)는 이상적인 확산음장인 경우에 해당하는 \(\phi_{in} = 90^\circ\)가 아니라 대략 \(\phi_{in} = 70^\circ\) 것으로 추정된다. 이러한 현상은 본 측저연장성 고유의 문제가 아니라 실제 연장성에서도 발생하며 이것은 Field incidence로도 한다.

Fig. 5 Comparison of sound transmission loss between the measurement in a simplified test apparatus and prediction; specimen = 5 mm glass.

Fig. 6은 절단 4 mm 와 3 mm 사이에 공기층이 10 mm 있는 중공이중판을 실험한 결과이다. 중공 이중판을 실험한 것은 차음성능에 중대한 영향을 미치는 mass-spring-mass 중간 주파수점이 간이 차음시험장치의 실험에서도 나타나는지를 확신하기 위한 것이다. Fig. 6의 결과에서 예측 mass-spring-mass 공진 주파수는 163 Hz의 저주파수에서 나타난다. 그러나 앞에서 언급했듯이 315 Hz 이하의 저주파수에서는 음압판정이 높은 편차를 보이기 때문에 mass-spring-mass 공진에 의해서 dip이 발생한 것인지를
판단하기 힘들다. 따라서 시험을 유리로 바꾸고 공기층의 두께를 줄여 다시 실험하였다. Fig. 7이 유리 5 mm와 3 mm 사이에 공기층이 5 mm 있는 중공이중판을 실험한 결과이다.

Fig. 6 Comparison of sound transmission loss between the measurement in a simplified test apparatus and prediction; specimen = steel (4 mm) + air-gap (10 mm) + steel (3 mm).

Fig. 7 Comparison of sound transmission loss between the measurement in a simplified test apparatus and prediction; specimen = glass (5 mm) + air-gap (5 mm) + glass (3 mm).

Fig. 8 Comparison of sound transmission loss between the measurement in a simplified test apparatus and prediction; specimen = sandwich panel.

3.3 실제 전항실험 비교

実際 전항실험에서의 시험은 KIMM의 전항실에서 수행하였 다. 수용실과 소음원실의 용적은 각각 225 m³, 52 m³이고, 시험 설치용 개구부의 크기는 2.4 × 4.2 m²이다. 시험에 사용된 시편은 샌드위치 판으로 구조는 0.6 mm의 철판 사이에 미네랄 225 mm 가 5 mm의 공기층을 두고 수평과 수직으로 설치된 구조이다.

Fig. 8은 실제 전항실에서 측정한 샌드위치 판의 결과와 간이 자유시험장치에서 측정한 결과를 비교한 그래프로 Small chamber는 간이 자유시험장치의 결과를 나타내고 Large chamber는 실제 전항실의 결과를 나타낸다.

실제 전항실에서의 시험 결과와 비교하였을 때 315 Hz 에서 3150 Hz 까지는 비교적 좋은 일치를 보이고 있다.

4. 결론

일반 건축물이나 선박에서 내재 소음 저감을 위하여 사용되는 차음재의 차음 성능 평가수단으로서 간이 자유시험장치를 개발하고 그 시험 성능을 비교하기 위하여 실험과 이론 예측을 수행하였다. 연구결과를 요약하면 다음과 같다.

1) 간이 자유시험장치는 기존의 전항실의 크기에 비하여 매우 작은 크기로 제작되어서 315 Hz 이하의 저주파수 영역에서는 상당히 큰 오차를 보임을 발견하였다.

2) 간이 자유시험장치의 시험 성능을 이론예측치와 실제 전항실 시험 결과와 비교하였을 때 315 Hz 이상의 주파수
대역에서는 좋은 일치를 보이고 있다. 이로부터 간이 차음시험장치는 차음제 개발과정에서 유용한 수단이 될 수 있을 것이다.

이후 연구에서 저주파수 대역에서의 성능을 보완하는 연구가 수행되어야 할 것이다.

후 기
본 논문은 과학기술부가 지원하는 특정연구개발사업 중 엔지니어링 핵심공학기반기술사업으로 지원되어 수행하였습니다.

참고 문헌