A Study on the Analysis of Seawater Pipeline Network for Open Rack Vaporizers

Ho-Yeon Kim, Jong-Hark Park, Jeong-Hwan Lee and Dong-Hyuk Kim

Key Words: Seawater Pipeline Network(해수배관망), Open Rack Vaporizers(ORV, 해수식 기화기), Linear Theory Method(선형해석법)

Abstract

This study was carried out to establish an analytical method on the open circuit seawater pipeline network for open rack vaporizers(ORVs). The linear theory method was chosen to solve this network system. In particular, the method was modified to calculate the static pressure at each node and to determine the operating condition of each pump with the mean static pressure of pumps and ORVs. The proposed method is the first report demonstrating that can be used as a solver for the complicated open circuit. Also, the method indicated the importance for exactly calculating equivalent length of pipes including valves, bends, fittings, and others to raise the accuracy. Although this technique is good for solving this system, it is still required to improve the convergence rate.

기호설명

\[O \] : Flow rate\([\text{m}^3/\text{h}]\)

\[C \] : External flow\([\text{m}^3/\text{h}]\)

\[K \] : Constant coefficient

\[n \] : Power coefficient

\[h \] : Head of pump\([\text{m}]\)

\[H \] : Head\([\text{m}]\)

\[A, B \] : Constant

\[EL \] : Elevation\([\text{m}]\)

\[\lambda \] : Weight factor

\[f \] : Friction factor

\[e \] : Roughness\([\text{m}]\)

\[D \] : Diameter

\[Re \] : Reynolds number

\[i, j, o \] : Index

\[p, P \] : Pump

\[orv \] : Open rack vaporizer

\[pump \] : Pump

1. 서론

천연가스 생산기지의 기화설비는 주로 해수를 가열원으로 하여 액화천연가스를 기화시킨다. 본 설비는 수직형 원심펌프로부터 배관을 통해 해수 를 공급받는다. 그러나 배관망의 복잡성 때문에 해수공급의 효율성을 판단하는 데 다소의 어려움이 발생되고 있는 실정이다.

현재까지 배관망 해석이론은 주로 밑패형 라인을 도대로 발전되어 왔다. 그러나, 본 설비는 개방형 라인으로 구성된 이중 공급 구조의 배관망을 형성하고 있다. 본 설비에 대한 해석적인 접근을 시도하기 위해서 우선적으로 기존의 배관망
해석이론인 Hardy-Cross법, Newton-Raphson법, Linear Theory법, Segregated CFD Approach를 검토하여 하나의 해석법을 선택하였다.

이어서, 선택된 Linear Theory법은 초기치가 필요없고, 빠른 수렴성을 가지고 있으며, 특히, 수 두개선이 아닌 유량계산을 근간으로 하기 때문에 본 개방형 해수 배관망의 경우 수량을 해석하는 데 보다 편리하여 본 방법을 부분적으로 보완하여 해석적으로 접근하였다.

2. 수학적 모델링

천연가스 기화설비용 해수 배관망은 Fig. 1에서 보는 바와 같이 제1공장에는 해수펌프가 P1부터 P5까지 5대의 펌프, 10대의 해수가열기, 5대의 기화기가 설치되어 있다. 그리고 제2공장에는 P6부터 P9까지 4대의 펌프, 해수가열기 6대, 기화기 3 대로 구성되어 있다.

우선적으로 배관라인은 연결점과 파이프를 구분하여 113개의 노드와 144개의 파이프로 나누어 번호를 부여하였다. 특히, 대기압 상태로 방출되는 파이프의 말단 부분에 노드를 만들어 그 노드에서 정압을 계산할 수 있도록 하였다.

본 시스템의 해석에 필요한 방정식은 일반적으로 알려진 노드에서의 연속방정식과 펌프의 에너지방정식을 사용한다. 연속방정식은 식(1)에 의해 113개의 방정식이 유도되었다.

\[
(\sum Q_i)_{ext} - (\sum Q_i)_{in} = C
\]

여기서, C는 외부유동으로 노드 안으로 들어오면 + 부호를 갖고, 나가면 - 부호를 갖는다. 그리고 에너지방정식은 중첩되지 않는 것으로 설계튜프와 펌프에 의한 가상튜프로 나누어 유도된다. 설계튜프에 의한 에너지방정식은 식(2)를 사용하여 23개의 에너지방정식을 구하였다.

\[
\sum K_i Q^i_{in} = 0
\]

여기서, 각 항은 시계방향의 유동을 가지면 + 부호를 받 시계방향이면 - 부호를 갖는다. 그리고, 펌프에 의한 가상튜프의 해석적 근거는 Jeppson
Fig. 2 Pump characteristic curves

\[
\sum K_i Q_i^v \pm \sum h_P = \Delta H
\]

(3)

여기서, 펌프에 대한 수두는 제1공장과 제2공장 이 다른 특성곡선(6)을 가지며 그것은 Fig. 2과 같 다. 일반적으로 펌프의 특성곡선은 식(4)의 2차 다항식으로 표현된다.

\[h_P = AQ^2 + BQ + H_o \]

(4)

특히, 신행해석법에서는 2차의 다항식으로 된 펌프특성곡선을 직접적으로 처리하는 데 어려움이 있기 때문에 식(5)의 변환된 식을 사용한다.

\[h_P = AQ^2 + H_o \]

(5)

여기서,

\[H_o = H_o - \frac{P^2}{4A} \]

(6)

각 노드에서의 정압계산은 최초에 펌프가 부착된 파이프의 유량으로부터 펌프의 수두를 계산하 고 그 수두로부터 다른 노드의 정압을 계산하게 된다. 그 계산방법은 Fig. 3에 보는 바와 같이, 꼬 꼬이 파이프에 화살표 방향의 유동이 발생되고 그 때

\[
H_j = H_i - H_f_i + EL_i - EL_j
\]

(7)

반대로, j 노드의 정압을 알고 i 노드의 정압을 계산하기 위해서는 식(8)을 사용한다.

\[
H_i = H_j - H_f_i - EL_i + EL_j
\]

(8)

또한, 식(7)-(8)로 계산된 각 노드에서의 정압은 직접적으로 펌프에 가장 인접된 노드에서의 평균 정압과 해수식 기화기 방출구에서의 평균정압 을 계산하는 데 사용된다. 그 평균 정압은 식(9) 와 식(10)에 나타나 있다.

\[
\bar{H}_P = \frac{\sum H_{P,i}}{N_{pump}}
\]

(9)

\[
\bar{H}_{onv} = \frac{\sum H_{onv,i}}{N_{onv}}
\]

(10)

식(9)와 식(10)은 간접적으로 해수식 기화기로 방출되는 유량의 추정치를 보정하는 데 사용된다. 그 방법은 Fig. 4에 보는 바와 같이, 추정치에 의 해 계산된 펌프의 평균공급유량에 의해서 결정된 수두와 식(9)와 식(10)의 차에 의해서 계산된 수 두 차에 의해서 증분 유량이 결정되게 된다. 여기서 결정된 증분 유량은 해당 기화기에서의 정 압분율에 의해서 방출되는 기화기의 유량치를 재 보정하게 되며 그 식은 다음과 같다.

\[
Q_{ons,j} = Q_{ons,j} + \frac{H_{ons,i}}{H_{ons,j}} \times \lambda \Delta Q
\]

(11)
특히, 석(11)에서 \(\lambda \)는 가중치로서 계산에 대한 수렴속도에 직접적인 영향을 미친다. 또한, 본 가중치의 적용은 계산상에서 필프특성에 따른 필프의 추정치 수두와 계산치 수두의 일치점을 찾는 데 보간법 사용이 불가능했기 때문에 적용한 것이다.

3. 계산 및 결과

이론 공급구조식 해수 배관망 해석을 위한 주요 계산절차는 Fig. 5에 보여 주고 있다. 또한, 2개의 반복루프가 있다. 하나는 추정치에 대한 일차 대형배관망을 풀기 위한 것이고 또 하나는 개방형에서 방출유량의 추정치를 보정하기 계산루프이다.

우선적으로 계산절차에 대하여 기술하자면, 첫 번째 단계에서 배관에 대한 기하학적 데이터와 지배방정식들에 대한 입력데이터를 받는다. 그 다음은 대수식에 대한 계수행렬과 기지벡터를 만들게 된다. 그리고 나서 대수식을 풀게 되고 계산된 배관의 유량으로부터 마찰계수를 결정하게 된다. 특히, 여기서 마찰계수는 단락하는 경우에는 Colebrook과 White가 제안한 다음의 식을(7) 사용했다.

\[
\frac{1}{\sqrt{f}} = 1.14 - 2\log_{10}\left(\frac{5}{D} + \frac{9.35}{Re f} \right)
\]

(12)

충류의 경우에는 \(f=64/Re \)를 사용하였다. 여기서, 계산된 마찰계수는 각 유량계산이 수렴되는 자료

Fig. 4 Principle of an incremental flow rate

Fig. 5 Flowchart of a calculation algorithm

관련해서 그렇지 않으면 다시 에너지 방정식의 지수식인 \(\mathbf{K}, \mathbf{n} \)을 치환해서 반복적으로 계산하게 된다.

다음으로는 계방형 배관망의 방출되는 유량치를 보정하는 단계로 각 노드에서의 정압과 필프들의 평균경압과 ORV출구의 평균경압이 가진 추정치 유량을 식(11)을 보정하게 된다. 그리고 ORV구의 평균경압이 대기압에 가깝게 되면 프로그램을 종료하게 된다.

본 알고리즘으로 계산된 결과는 Table 1과 같다. 그리고 해수가열기에 대한 유량조건은 300 m³/h로 일정한 유량조건을 주었다. 실제 시스템에서는 내부의 24개 노즐에 대한 상당량이 산출이 불가능했고, 다수기 해수가열기 입수 설비내 필프가 수위자판 센서에 의해서 가동되기 때문에 연속적인 해석이 어려웠다. 또한, 해수가열기로 공급된 유량은 어느 시간 내에서 다시 주 배관으로 공급된 유량과 동일하고 주배관에 흐르는 유량에 비해 상대적으로 적기 때문에 일정 유량조건으로 계산하는 것이 편리하였다.
본 알고리즘은 개방형 루프를 계산하는 데 계산속도가 다소 느리다는 단점이 있지만 수렴성은 상당히 좋은 것으로 나타났다. 그리고 본 프로그램에 대한 정확도는 프로그램 계산 알고리즘보다 배관의 상당량을 정확하게 산출하는 데 크게 의존하는 것으로 나타났다.

<table>
<thead>
<tr>
<th>Facility</th>
<th>FR(m³/h)</th>
<th>Facility</th>
<th>FR(m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>10,862.2</td>
<td>V1</td>
<td>13,799.3</td>
</tr>
<tr>
<td>P2</td>
<td>10,862.2</td>
<td>V2</td>
<td>15,236.8</td>
</tr>
<tr>
<td>P3</td>
<td>10,862.3</td>
<td>V3</td>
<td>15,049.3</td>
</tr>
<tr>
<td>P4</td>
<td>10,862.3</td>
<td>V4</td>
<td>14,964.3</td>
</tr>
<tr>
<td>P5</td>
<td>10,862.2</td>
<td>V5</td>
<td>14,942.2</td>
</tr>
<tr>
<td>P6</td>
<td>17,228.0</td>
<td>V6</td>
<td>16,474.1</td>
</tr>
<tr>
<td>P7</td>
<td>17,228.0</td>
<td>V7</td>
<td>16,389.7</td>
</tr>
<tr>
<td>P8</td>
<td>17,228.0</td>
<td>V8</td>
<td>16,367.7</td>
</tr>
<tr>
<td>P9</td>
<td>17,228.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 결론

본 연구는 선형해석법을 이용하여 개방형 이중 공급 구조식 해수배관망을 해석하는 기초를 마련하였다. 부분적으로 대수식을 효과적으로 처리하는 방법과 필프의 문제점을 보다 빠르게 결정할 수 있는 알고리즘을 개발하는 것이 보완사항으로 남아 있다.

본 해석법으로 대형화된 배수설비에서 공급되는 유량의 가치를 평가하고 이용효율을 극대화하는 데 효과적으로 사용할 수 있을 것으로 판단된다.

후 기

본 연구는 한국가스공사 연구개발사업비 지원에 의해서 수행되었으며, 이에 관계자 여러분께 감사드립니다.

참고문헌