Design and Performance Evaluation of Sludge Dewatering System based on Electrocoagulation and Electroosmosis

Heesoo Shin, Changsin Yeo, Sanghyun Byun and Jaekun Lee

Key Words: Electrocoagulation(전기응집), Piston Type Filter Press(피스톤형 필터프레스), Zeta Potential(제타 전위), Water Content(함수율), Electrofloation(전기부상)

Abstract

This study is to develop the pretreatment for the excess and digested sludge by electro-coagulation and dewatering. Electrocoagulation is applied to excess and digested sludge before transferring to the piston type press for dewatering. Piston type filter press as a laboratory scale plant was used to estimate the dewaterability.

MMD of excess sludge was increased from initial diameter of particles(34.16 μm) to the 87%(64.01 μm) after electrocoagulation. Al electrode is more effective than Fe electrode for the dewaterability of excess sludge. Electrodeversion after electrocoagulation as pretreatment makes the water content of sludge cake 50~60 wt%.

1. 서 론

수처리장과 산업체에서 발생되는 슬러지의 역할은 150만톤(97년)으로 이 중 대부분이 해양 투기 및 육상매립 방법에 의해 처리되고 있다. 특히 부산지역에서 발생되는 대부분 슬러지는 해양투기로 처리하고 있어 향후 예상되는 해양투기 금지조약에 의해 슬러지 처리방법이 큰 사회적 문제로 대두될 것으로 예상된다.

이러한 슬러지를 처리하기 위해서는 먼저 처리 속도를 향상시키고 탈수된 슬러지의 함수율을 최소화하는 것이 무엇보다 중요하다. 슬러지 탈수는 크게 탈수 전처리 단계와 탈수 단계로 이루어져 있는데, 탈수 전처리 단계는 점침, 농축, 소화, 저류의 과정을 통해 슬러지가 탈수되기 용이하도록 처리하는 단계이며, 탈수 단계는 전처리된 슬러지를 가압 탈수장치에 투입하여 슬러지에 함유되어 있는 수분을 탈수하는 단계로서 최종적으로 함수율이 약 80 wt%인 탈수 슬러지를 생산하는 것이다. 이때 탈수 전처리 과정에서 슬러지의 함수율을 최소화하면, 탈수 단계에서 투입되는 에너지를 감소시킬 수 있으며, 탈수시간의 감소와 총 함수율을 최소화할 수 있다.


Rubach 등 (1997)은 (+)극에 알루미늄 (+)극에 스테인레스 스틸을 설치하여 상수와 하수처리를 위한 전기 부상(Electroflocculation) 처리 장치에 대한 연구를 수행하였다. 알루미늄의 용존량
2. 실험장치 및 방법

2.1 전기응집

2.1.1 실험장치

Fig. 1은 본 실험이서 사용한 실험장치의 개략도를 나타낸 것으로, 반응조와 교반기, 그리고 전기장을 형성시키는 전극(120x80x3 mm)과 전원공급장치로 구성되어 있다. 본 연구에서 사용된 전기응집장치는 2종류로서, 전기응집장치(I)의 경우는 전극의 개수가 4개이며, 전기응집장치(II)의 경우는 전극 개수는 2개이다. 이는 전극의 개수에 따른 전기응집효과의 가능성을 파악하고 이에 따른 탈수효율의 감소 가능성에 파악하기 위해서이며, 이때 사용된 전극의 단면은 사각형이다.
반응조에 늘러지 3 L을 투입하고 교반기를 이용하여 반응조 전체에 균일하게 분포시키고, 전원공급장치와 전극을 이용하여 반응조 내부에 전기장을 형성시킨다. 전극의 재질과 개수, 인가 전압의 세기에 따른 전기응집 성능은 분석하기 위하여, 전극은 철과 알루미늄 재질을 사용하였으며, 인가전압은 전원공급장치를 이용하여 조절할 수 있도록 하였다. 이러한 실험조건에서 전기응집 후의 슬러지 압도, 유기물 함량, 탈수율, 수소이온농도(pH) 등을 측정하였으며, 그 결과를 전기응집을 가하지 않은 생슬러지의 결과와 비교하여 전기응집의 영향을 분석하였다.

2.1.2 실험방법

Fig. 2는 전기응집 실험 방법에 대한 처리 흐름도를 나타낸 것으로, 먼저 슬러지의 채취후 초기 함유량, 입자 크기, 유.무기물 함유 비율 등의 분석을 수행한다. 분석된 슬러지를 전기응집장치를 통해 슬러지를 응집시키고 응집된 슬러지의 특성을 파악하기 위해 슬러지의 분석을 다시 수행하고 측정한 슬러지 응집조건을 도출한다. 응집 슬러지의 분석이 끝난 후, 각각 가압발수 실험과 전기발수 실험을 수행하여, 각 발수장치에서의 발수성능을 분석한다. 이러한 전기발수 실험을 통해 슬러지의 전기응집 효과를 파악하고 최종 발수 캐스크의 함유량을 측정한다.

2.2 가압 및 전기/가압 발수

2.2.1 실험장치

Fig. 3은 피스톤형 필터 프레스(piston type filter press) 전기발수 장치의 전체 구성도를 나타낸 피스톤 설립리버, 직류전원 공급장치, 유량계, 에어
2.2.2 실험방법

가압발수시험은 전기를 인가하지 않고 가압에 의한 분리시험을 실시하였으며 가압에 의한 분리 실험은 발수장치를 이용하여 에어 캐리어의 압력과 슬러지에 분리 전력으로 하였다.

알림 조절기를 이용하여 적정 압력으로 조절하였으며 전류를 이용하여 전류를 가압하게 되고 이 회로가 직접 손괴를 압축하게 된다.

본 연구에서는 압력을 4 kg/cm² 고정하여 발수 실험을 수행하였으며 발수액은 실린더 박막의 높이 40mm의 지름 3 mm 구멍을 뚫어 밖으로 뽑지도록 하였다. 시간의 흐름에 따라 이광과 물의 양의 전자화물을 통해 3초 단위로 캐리어에 자동적으로 획득할 수 있게 하였다.

3. 실험결과

3.1 입도변화

Table 1은 수영하수처리장의 소화 슬러지의 전기압 실험조건을 나타내며, 전극 재질과 인가 전압에 따른 전기압 효과에 대한 실험을 수행하였다. 슬러지의 음압 전후의 수, 무기질 함량의 측정하였으며, (+)극에 인가된 전압은 43 V, (-)극 전압은 43 V로 하였으며, 인가 전류는 5 A, (+)극과 (-)극의 극간 간격은 3 cm로 설정하였다. 이때의 액과의 전가 되어지는 전류밀도는 0.03 A/cm²이다. 인가 전압의 경우 (+)극에서 발생되는 수소의 양에는 큰 영향을 미치지 않으므로 본 연구에서는 인가 전류에 대한 영향만을 고려하였다. 소화 슬러지 특성은 유기물의 함량을 줄이기 위해 물기 및 유기물을 비생물을 사용하여 분해한 슬러지이며, 영구 슬러지에 비해 반응조세에서의 인가 전압이 높으며, 이는 소화 슬러지내에 포함되어 있는 콜로이드(colloid) 입자의 흡착으로 소화 슬러지 내 유기물의 함량을 측정한 본 결과 양이 슬러지에 비해 낮은 유기물 함량 때문이었다. 이러한 유기물 함량은 슬러지의 비장함에 영향을 미치며, 발수 효율 저하의 원인이 된다. 소화 슬러지내에 포함되어 있는 부유 고형물(suspended solid)의 양은 전기압 절 실험활성화의 변화 때문이다.

Table 2는 수영하수처리장의 양이 슬러지의 전기압 실험조건을 나타내며, 전극 재질과 인가 전압에 따른 전류효과에 대한 실험을 수행하였다. (+)극에 인가된 전압은 18 V, (-)극 전압은 18 V로 하였으며, 인가 전류는 5 A, (+)극과 (-)극의 극간 간격은 3 cm로 설정하였다. 전기압에 가장 영향을 미치는 인자는 전류밀도이며 소화 슬러지 양이 슬러지 전기압 실험강을 평가하기 위해 동일한 전류밀도에 실험하였다.

Fig. 4는 소화 슬러지의 전기압 실험후의 사전으로, 전류압력수 슬러지가 상부층과 하부층으로 나누어져 있는 모습이다. 이러한 형태가 생기는 원리는 전기부상(electrofloatation) 처리와 전기압 조절에 따른 것이며, 전기부상처리는 (1) 가스 기포 생성(gas bubble generation), (2) 가스 기포와 콜로이드(colloid) 입자의 접촉, (3) 가스 기포의 콜로이드(colloid) 입자표면 흡수, (4) 가스 기포와 반응으로 상부로의 부상과정이 포함되어 있는 것이다. (1)의 과정은 전기방해에 의해 (-)극에서 수소(H₂)가 발생되어지고 (+)극에서 산소(O₂)가 생성되어진다. 이러한 과정을 통해 반응양 내부에는 기포(bubble)가 생성되어 지게 되고, 수소 가스는 상부로 부상되면서 가스 기포와 콜로이드.
Table 2 Test conditions of the electrocoagulation for excess sludge

<table>
<thead>
<tr>
<th>Sludge type</th>
<th>Excess sludge in Soo Young wastewater treatment plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode material</td>
<td>Fe</td>
</tr>
<tr>
<td>Applied voltage</td>
<td>18 V</td>
</tr>
<tr>
<td>Applied current</td>
<td>5 A</td>
</tr>
<tr>
<td>Electrode distance</td>
<td>3 cm</td>
</tr>
<tr>
<td>Current density</td>
<td>0.03 A/cm²</td>
</tr>
</tbody>
</table>

Fig. 4 Photographs of digested sludge during electrocoagulation process in the reactor (a) initial and (b) after electrocoagulation.

Fig. 5 Particle size distribution of the digested sludge during the electrocoagulation.

Fig. 5는 전기응집 전후의 소화 슬러지의 입도 변화를 입자추적기 (Malvern, Mastersizer)로 분석한 결과를 나타낸 것으로, 초기 슬러지와 전기응 집후의 입도 변화를 나타내었다. 소화 슬러지의 경우 슬러지 처리공정의 마지막 단계로 안정화된 슬러지이며, 유기물의 함량이 있어 슬러지에 비해 적은 것으로 분석되었다. 슬러지 입도 분석 결과, 전기응집을 하지 않은 슬러지의 경우 절반 중앙입집 (MMD)은 34.72 µm 있으며, 전극의 계열은 알루미늄, 인가 43 V, 인가 전류 5 A, 전극사이의 거리를 3 cm로 하였을 경우 상부로 부상 처리되어진 입도의 크기는 41.29 µm로 그 크기가 18.92 % 증가하였다. 이는 양액 슬러지에 비해 소화 슬러지의 경우 입자의 높도 차이에 의한 것으로 소화 슬러지의 경우 양액 슬러지에 비해 동적화 되어있고, 전기응집의 결과 미세입 자의 영향이 있어 슬러지에 비해 상대적으로 적기 때문이다.

소화 슬러지의 경우 전기응집 전의 초기 함수율 97.63 wt%, 전기 부상처리과정에서의 발생된 소화 슬러지의 경우 94.88 wt%로 2.75 wt%, 하부 슬러지의 경우 95.80 wt%로 1.83 wt%의 감소가 관찰할 수 있었다. 양 슬러지의 경우 유기물의 함량이 높은 반면 소화 슬러지의 경우는 유기물의 함량이 줄어들어 농축되어진 것으로 분석되었다. 소화 슬러지와 양액 슬러지의 초기 슬러지 함수율은 양액 슬러 지가 원심 농축기를 거쳐 함수율은 감소되고, 소화조로 유입되어 소화 공정에 의해 최종 슬러지로 발생되기 때문에 양액 슬러지보다 낮은 안정된 슬러지가 발생되지만, 함수율은 소화 슬러지의 함수율이 낮게 변모되었다. 또한 전극의 격렬 변경은 양액 슬러지의 경우 알루미늄 전극을 사용하는 것이, 소화 슬러지의 경우에는 철전극을 사용하는 것이 좋은 결과를 얻을 수 있었다.

3.2 전기거압 탈수 실험결과

Fig. 6은 전기응집 슬러지를 전기거압 탈수를
Fig. 6 Test results of the water reduction for the digested sludge electrocoagulated using the electrodewatering system

Fig. 7 Test results of the water reduction for the digested sludge using the electrodewatering system as a function of applied voltage

실시한 결과를 나타낸 것으로, 전극과 알루미늄 전극으로 전기응집 처리한 소화 슬러지에 전기압을 인가 전압 120 V로 고정하여 전극내전압에 따라 압력과 전기압을 동시에 투여하였을 경우의 전기압수 실험결과이다.

전기 압수압수의 경우 일반적으로 슬러지에서의 Colloid입자는 응전하를 띠고 있는 슬러지에 전압을 인가하여 입자간 전기영동성(Electrophoresis)을 기여하여, 이에 따라 슬러지의 압수압수를 저감하는 점이 있다. 인가전압을 120 V로 고정한 이유는 가압 탈수와 전기 압수압수 실험결과를 비교하기 위한 것이다. 초기 압수압수 94.67 wt%, 94.88 wt%인 슬러지 50 g를 피스톤형 필터 프레스(piston type filter press) 탈수장치에 투입한 후, 압력 4 kg/cm²로 25분간 실험을 실시하면서 인가 전압을 120 V로 고정하였다. 필터는 나일론 멤브레인 필터를 사용했으며 초기 슬러지 농도는 1 cm 였으나 탈수 후의 농도는 0.1 cm로 감소하였고, 축종 슬러지 케이크의 압수압수율은 젤 전극의 경우 54.90 wt%, 알루미늄 전극의 경우 56.90 wt%가 되었다. 이는 전기응집 슬러지의 가압 탈수와 전기압수 탈수장치의 결과를 통해 본 연구의 목적인 전기응집 처리된 슬러지의 탈수시간을 줄이고 탈수효율 저감의 효과를 동시에 만족하는 결과를 나타내었다. 또한 양의 슬러지를 농축처리하는 농축처리기에는 탈수압수율을 약 3 4 wt% 감소시키기 위해 하수 처리장에 사용되어지고 있는 본 연구에서의 전기압수장치를 이용하여 이러한 농축을 대체하기에 충분한 탈수압수감소의 결과를 실험을 통해 분석하였다. 하지만 이러한 전기응집 슬러지의 경우 학과응집에 비해 전극의 설치비용과 전극의 부식성 등의 문제점이 있으며, 전기 안전에 따른 전력 소모의 단점이 있다.

또한 전기압수 처리를 하지 않은 초기 97.70 wt%의 압수압수율을 가지는 소화 슬러지의 경우 압수압수를 통해 78.10 wt%의 압수압수율을 나타내었으며, 전기압수 처리한 소화 슬러지의 경우 인가 전압은 0 V, 20 V, 40 V, 80 V, 120 V로 증가하였을 때 최종 압수압수율은 75.63 wt%, 66.13 wt%, 63.46 wt%, 54.90 wt%를 실시하여 결과를 분석할 수 있었다. 인가 전압이 증가할수록 전기압수 탈수장치의 최종 압수압수율은 낮게나간 결과를 나타내었으며 120 V의 경우 최저 압수압수율 54.90 wt%의 낮은 압수압수율을 나타내었다.

Fig. 7은 전기응집 유·무 및 전기압수 탈수장치에서의 인가 전압 변화에 따른 탈수 결과와 원 슬러지의 최종 압수압수율 시간에 따른 압수압수율을 나타내었다. 전장적으로 인가 전압이 높음수록 낮은 최종 압수압수율을 나타내며, 탈수시간의 측면에서 실험에 의한 인가 전압이 높음수록 일정한 압수압수율까지 이르는 시간이 감소한 것으로 분석되었다.

4. 결론

본 연구는 기존 탈수기의 탈수효과를 증대시키기 위해, 탈수 전처리 과정에서 슬러지 입자의 전기응집 원리를 이용하여 탈수시간과 최종 압수압수율을 감소시키고, 하수 처리장의 콜럼버지기를 대신할 수 있는 가능성을 파악하였다. 또한 슬러지의 입도 분석, 압수압수율, 수소이온농도, 유기물 함량을 측정하였으며, 전기응집 처리된 슬러지의 압수압수 효과와 전기압수 탈수효과를 파악하기 위해 피스톤형 필터 프레스(piston type filter press) 전기압수 장치를 설계, 제작 및 성능평가에 관한 연구를 수행하였으며 연구결과를 요약하면 다음과 같다.
(1) 수영하수처리장에서 채취한 잔여 슬러지의 질량증가량(MMD)은 34.16 μm이며, 전기 응집 후의 슬러지 질량증가량은 64.01 μm로 87 % 증가하였으며, 소화 슬러지의 엎도 측정결과 질량 증가량(MMD)은 34.72 μm이며, 전기응집후의 질량증가량은 41.29 μm로 18.92 % 증가하였다.

(2) 슬러지 전기 응집 실험 전후의 유기물 함량은 소화 슬러지의 경우 알루미늄 전극에서 약 24.3 % 감소를 나타내었으며 탈수 효과에 양호한 결과를 나타내는 것으로 분석되었다.

(3) 절 전극을 사용하여 전기응집 실험을 수행한 결과, 초기 함량은 97.63 wt% 소화 슬러지를 94.67 wt%로, 알루미늄 전극 사용시 초기 함량은 97.63 wt% 소화 슬러지가 94.88 wt%로 감소되어 전기응집처리로 슬러지의 함량을 3 %정도 감소시킬 수 있어 기존 건축재료의 성능과 유사하게 분석되었으며 가압탈수시 전기응집 유효에 따라 3 %이상의 탈수효과와 탈수시간 감소효과가 있다.

(4) 전기응집에 의한 하수 슬러지 전처리 효과는 슬러지 잔여 증가(2배), 유기물 감량(조기의 50 %), pH 증가(7.7), 슬러지 박도 감소(조기의 15 %수준), 3 % 정도의 슬러지 함량을 감소와 기존 가압 탈수 처리속도를 2배 이상 증가시킬 수 있는 장점이 있으나, 전극마모 및 전력소모량 증가라는 단점과 현장적용을 통해 경제성 분석은 요구된다.

(5) 전기응집된 동일 슬러지에 대해 가압탈수 및 전기가압 탈수실험을 각각 수행하여 탈수효과를 분석하였다. 전기탈수장치에 의해 생성된 케이크의 함량은 최적 조건에서 54.9 wt%로서 가압 탈수 케이크의 함량이 78.1 wt%임을 고려하면, 전기에 따른 가압 탈수에 비해 탈수 성능이 20 % 이상 증가할 수 있었다.

(6) 가압 탈수와 전기 탈수의 탈수 소요시간을 비교한 결과, 초기 슬러지 함량이 80 %에 도달하는 시간이 가압 탈수의 경우 20분이 경과되었으며, 전기 탈수의 경우 12분 이내에 초기 함량의 80 %에 도달하여 슬러지 처리속도 향상을 기대할 수 있다.

(7) 전기응집 전처리를 거친 후 전기 탈수에 의해 발생된 슬러지의 경우, 슬러지 처리속도 2배 향상과 기존 가압 탈수보다 30 %가 낮은 슬러지 함유율이 50~60 wt% 정도로 수수비를 절감, 베파 감소 등의 경제적 이익 상출효과를 유발할 수 있을 뿐만 아니라 건축재 재료, 연료 등의 재활용율이 증가될 것으로 평가된다. 또한 슬러지 처리·처분 공방인 건조 및 소각공방이 적극적으므로 이용됨에 따라 관련된 기술이 크게 향상될 것 이 기대된다.

참고문헌


