XP-SWMM 모형을 활용한 인천교 매립지 침수 피해 경감에 대한 연구

Study on Reduction of Flooding Area Using XP-SWMM at Inundation Region in the Reclaimed Land near the Incheon Bridge.

최계운*, 이호선**, 한만신***, 이병주****
Gye Woon Choi, Ho Sun Lee, Man Shin Han, Byung Joo Lee

요 지

인천지역은 지형이 낮은 관계로 배수가 원활하지 못한 지역이 있고 또한 서해안 특유의 높은 조식간만의 차이로 인하여 만조시에는 배수가 어려워 침수가 발생하는 지역이 많다.

이에 대하여 매립된 인천교 주변 하수관거의 통수능을 수치해석을 통하여 분석하고 배수 체계 및 인천교 주변의 내수 배계에 대한 문제점을 파악하여 침수 개선방안을 제시하므로서 인천교 주변 매립지의 침수피해를 경감시키고자 하였다. 통수능 분석을 위한 수치해석 프로그램으로 SWMM모형이 선정되었으며 보다 정확한 해석을 위하여 대상 유역을 수설 개별 소유역으로 구분하여 소유역의 유출을 계산한 후에 관로 내 호흡에 대하여 해석을 실시하였다. 소유역에서는 보다 정확한 유출량 상정을 위하여 평균유출계수(C값)를 사용치 않고 소유역마다 산출된 범도의 유출계수를 이용하였다. 유출량 산정을 위한 강우량은 기존의 인천대공식과 최근의 강우량을 감안한 해석결과를 비교하여 기존의 인천대 공식 사용이 가능함을 판단하고 이를 사용하여 20년, 30년 변도의 확률강우량도를 산정하였다. 설계변도에 대하여 유역 내 침수 피해를 경감시키는 4개의 대안을 선정하여 각각의 대안에 대한 해석을 실시하여 침수피해 개선효과를 비교하여 최적의 대안을 판단하였다.

핵심용어: Reduction of Flooding, SWMM, Incheon Bridge

1. 서론

인천 지역은 지형이 낮은 관계로 배수가 원활하지 못한 지역이 있고, 또한 서해안 특유의 높은 조식간만의 차이로 인하여 만조시에는 배수가 어려워 침수가 발생하는 지역이다. 인천시 상습침수 해소대책 보고서(인천광역시,2001)에 의하면 1997년부터 2001년까지 5년 동안 건물은 10동 이상 침수구역은 32개소로 나타났으며, 이중 18개소는 상습침수지역으로 나타났다.

이러한 침수를 방지하기 위해 그동안 유수지 증설, 펑프장 증설, 관계확장 등의 침수해소 대책을 추진해 왔지만 조류의 영향과 부정한 수리현상, 그리고 늘어나는 도시화와 유출량을 응답적으로 파악하지 못함으로써 합리적인 개선방안을 도출하지 못하고 있는 실정이다.
본 연구에서는 XP-SWMM의 Runoff 레이어를 활용한 강우유출예측과 1차원 부정정방류 해석방정식인 Dynamic Wave 방정식을 선택하여 해석함으로써 배수 및 역류, 관내 저류 등의 영향을 고려하였고, 첨수계 선방안을 4가지 대안으로 검토하였으며, 각각의 수치해석 결과를 토대로 인천교 유역의 최선의 대안을 제시하였다.

2. 대상유역의 특성 및 관로현황

2.1 유역의 개황
인천시는 지형적으로 면도 표고 50m 이하가 행정구역 면적의 87.7%가 대부분 저지대로 이루어졌으며, 경사도가 20% 미만인 지역이 전체의 89.3%로 대체적으로 완만한 지형을 형성하고 있다. 또한 인천시 하수도의 배수구역은 가좌, 승기, 굴포, 학익, 공촌, 해안 및 용유의 7개 구역으로 나뉘어지 있으며 이 중 가좌배수구역이 본연구 대상 유역이다. 가좌배수구역은 도화 외 4개 배수분구가 인천교 매립지 간선관구로 유입되고 있으며, 서남수로 유입되는 서남배수분구의 수문으로 유입되는 송현배수분구로 구성되어 있다. 가좌배수구역의 토지이용현황은 전체 유입면적 3,394.5ha 중 주거 및 상업, 공업 지역이 전체 81.4%로 대부분 지역이 시가지화 되어 있는 상태로 주거(43.2%), 상업(8.6%), 공업(29.4%), 논지(18.6%)로 나타나 있다.

2.2 대상구역 관로현황
인천시 기존 관로는 노후관 교체 및 관로 개량, 보수등으로 지속적인 관로정비사업을 시행하고 있다. 인천시 하수관로는 주로 원형관으로 구성되어 있으며, 총 3,043.55km의 길이를 가지고 있다.

3. 모형의 해석 및 검증

3.1 입력자료의 구성
3.1.1 소유역 분할 및 유출계수
배수분구별 토지이용현황을 활용하여 각 소유역 면적 묶음의 유출계수를 적용하였으며 토지이용별 유출계수는 하수도시설기준(1998.2, 환경부)에서 제시된 값을 사용하였고 대상구역의 소유역 분할과 유출계수는 그림1, 2와 같다.

![그림 1. 대상구역 소유역 분할도](image1)

![그림 2. 대상구역 유출계수 분포도](image2)

3.1.2 관리자료
본 연구에서 사용된 관리자료는 1999년도 인천시에서 시행한 '하수도정비 기본계획 보고서'에서 수리계산을 위해 총량된 관리자료와 중요지점의 현장조사를 통하여 수집한 관리자료를 사용하였다.
3.2 경계조건

3.2.1 하류경계조건
- 조류변화

인천지역의 조식의 간단 차이는 약 9m이다. 또한, 인천지역의 하수도는 하천을 통해 바다로 직결 방류하거나, 하천 하류부에 설치된 유수가를 통해 평포 또는 자연유하 방식으로 바다로 방류하기 때문에 수치해석시 반드시 조류를 고려해야한다. 본 연구에서는 유수가 수위가 최대로 이루어져 고조위와 홍수가 일치하는경우에 대하여 수위를 적용함으로써 최악의 상황을 고려하여 수치모형을 실시하였다.
- 유수지수위

인천개유수지의 수위변화는 유수지에 유입한 우수량이 동일한 시간에 유입된 것으로 고려하여 유수지의수위변화를 산정하였다. 또한 유수지수위를 계산하여 하류경계조건으로 구성한 후 평포에 의해서만 바다로배출되는 상황을 가정하여 모형실험을 실시하였다. 그림은 모형에 사용된 시간의 변화에 따른 유수지수위그래프이다.

그림 3. 현 실험 20년 변도 모의시 인천개 유수지 수위변화

3.2.2 상류경계조건
- 확률조사량

일반적으로 계획변도는 하수도시설기준(환경부, 1998) 및 하수도정비기본계획수립지침(환경부, 1997)에 의하여 관저유역면적12ha 이상의 경우 10년을, 유역면적12ha 미만인 경우 5년을 적용으로 하고 있다. 인천개 지역의 경우 대립수량이 저속되어 유로장이 많으나 아니라 유역면적이 넓고 관로장성이 풍부하여 관로규모에 비하여 유량이 매우 크고 해안의 조식장면에 영향을 많이 받는 점을 감안하여 일정규모 이상의 주 간선관로에 대하여는 20년 변도를 계획하여 설계되었다. 이점을 고려하여 대안작성과 비교분석을 위한 변도는 인천개공설을 활용하여 20년변도를 사용하였으며, 배출시간을 과사하기 위해 임계거지시간을 계산하였다. 20년의 강우량을 이용하여 모의된 각각의 저속시간별 관로로부터 유수지로 배출되는 최대홍수량은 표 1과 같이, 인천개공설에 의한 확률감수량은 표 2와 같다.

표 2 강우저속시간별 최대홍수량 비교

<table>
<thead>
<tr>
<th>유량</th>
<th>지속시간</th>
<th>50min</th>
<th>55min</th>
<th>60min</th>
<th>65min</th>
<th>70min</th>
<th>80min</th>
</tr>
</thead>
<tbody>
<tr>
<td>최대유량</td>
<td>378.5</td>
<td>379.3</td>
<td>380.1</td>
<td>374.8</td>
<td>370.3</td>
<td>361.2</td>
<td></td>
</tr>
</tbody>
</table>

표 3 인천개공설에 의한 확률감수량

<table>
<thead>
<tr>
<th>지속시간</th>
<th>제한기간</th>
<th>1시간</th>
<th>2시간</th>
<th>3시간</th>
<th>4시간</th>
<th>6시간</th>
<th>8시간</th>
<th>12시간</th>
<th>18시간</th>
<th>24시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>20년</td>
<td>75.23</td>
<td>107.96</td>
<td>131.49</td>
<td>150.48</td>
<td>180.78</td>
<td>205.2</td>
<td>244.08</td>
<td>289.08</td>
<td>325.44</td>
<td></td>
</tr>
</tbody>
</table>
3.3 모형의 검증
1997년 8월 4일에 발생한 실제 채수지역과 실강우 자료를 이용하여 해석된 모의 채수지역을 비교하여 그림 5에 나타내었다.

그림 4. 모형검증에 사용된
강우사상(1997년 8월 4일 06시 ~ 16시)

그림 5. 모의결과와 실제 채수지역의 비교

그림 5에서 보는 것과 같이, 모의 결과를 통한 예상 채수지역이 인천시에서 조사된 실제 채수지역보다 간식동 상류부와 가좌지구, 석남동에서 채수구역이 좀 더 넓게 나타났지만 대체로 모의된 채수지역과 실제 보고 된 채수 지역이 일치하는 것을 볼 수 있다. 따라서 본 과업에서 선택된 모형과 모의에 필요한 계수들의 결정이 비교적 합리적임을 알 수 있다.

4. 대안설정 및 해석결과 비교검토

4.1 대안설정
현재 상태의 관로 침수 피해를 줄이기 위한 관로의 신설 및 증설에 대한 시나리오를 표3과 같이 작성하였다. 급변 연구에서는 표 4에서 보는 것과 같이 좌안, 우안의 주간선의 수위 비교를 통하여 대안 비교를 실시하였다.

4.2 대안별 해석결과 비교
각 대안별 좌안, 우안의 주간선 부분의 수위에 대한 예측은 표 4와 같이 그림 6과 그림7에서는 각 대안의 수위를 나타내었다. 대안별 예측을 살펴보면 대안1이 가장 낮아지는 것으로 해석되었고, 대안4인 경우 주간선 일부만 증설을 실시하였으나 주간선의 수위는 상관성 있는 것으로 해석되었다.

표 3. 대안 시나리오의 중요 내용

<table>
<thead>
<tr>
<th>구분</th>
<th>대안 1</th>
<th>대안 2</th>
<th>대안 3</th>
<th>대안 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>주요특성</td>
<td>-주간선 관계의 3단 증설</td>
<td>-주간선 관계의 1단 증설</td>
<td>-주간선 관계의 1단 증설</td>
<td>-주간선 관계의 1단 증설</td>
</tr>
<tr>
<td></td>
<td>-주간선 관계 시점부 유회관 신설</td>
<td>-나머진 1단과 동일</td>
<td>-나머진 1단과 동일</td>
<td>-나머진 1단과 동일</td>
</tr>
<tr>
<td></td>
<td>-기타 용량부족 관개 용량 증대</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>좌안</td>
<td>-주간선관계 유량배분을 통한 유회관 신설</td>
<td>-도화동 경인천 둘면 상류측 우회</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-도화동 경인천 주변 상류측 우회</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-기타 용량부족 관개 용량 증대</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
표 5 좌안, 우안 해석결과

<table>
<thead>
<tr>
<th>좌안 (관번호)</th>
<th>진이 (m)</th>
<th>(좌안)허위고 (m)</th>
<th>우안 (관번호)</th>
<th>진이 (m)</th>
<th>(우안)허위고 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11001</td>
<td>37</td>
<td>0.44 0.56 0.62 0.63</td>
<td>10001</td>
<td>53</td>
<td>0.81 0.44 0.18 0.43</td>
</tr>
<tr>
<td>11002</td>
<td>166</td>
<td>0.49 0.61 0.68 0.69</td>
<td>10002</td>
<td>213</td>
<td>0.97 0.56 0.30 0.54</td>
</tr>
<tr>
<td>11003</td>
<td>274</td>
<td>0.43 0.55 0.62 0.63</td>
<td>10003</td>
<td>142</td>
<td>1.14 0.72 0.46 0.70</td>
</tr>
<tr>
<td>11004</td>
<td>283</td>
<td>0.32 0.45 0.52 0.53</td>
<td>10004</td>
<td>215.1</td>
<td>1.09 0.65 0.39 0.63</td>
</tr>
<tr>
<td>11005</td>
<td>342</td>
<td>0.23 0.36 0.42 0.44</td>
<td>10005</td>
<td>278.9</td>
<td>1.03 0.58 0.31 0.56</td>
</tr>
<tr>
<td>11006</td>
<td>69</td>
<td>0.10 0.24 0.30 0.32</td>
<td>10006</td>
<td>260</td>
<td>0.93 0.49 0.20 0.47</td>
</tr>
<tr>
<td>11007</td>
<td>44</td>
<td>0.08 0.21 0.28 0.30</td>
<td>10007</td>
<td>276</td>
<td>0.93 0.51 0.22 0.49</td>
</tr>
<tr>
<td>11008</td>
<td>116</td>
<td>0.06 0.20 0.26 0.29</td>
<td>10008</td>
<td>238.5</td>
<td>0.83 0.45 0.16 0.43</td>
</tr>
<tr>
<td>11009</td>
<td>56</td>
<td>0.23 0.36 0.43 0.45</td>
<td>10009</td>
<td>106</td>
<td>0.74 0.45 0.20 0.36</td>
</tr>
<tr>
<td>11010</td>
<td>88</td>
<td>0.20 0.34 0.40 0.42</td>
<td>10010</td>
<td>36</td>
<td>0.89 0.64 0.41 0.55</td>
</tr>
<tr>
<td>11011</td>
<td>60</td>
<td>0.17 0.31 0.37 0.39</td>
<td>10011</td>
<td>358</td>
<td>0.87 0.64 0.41 0.52</td>
</tr>
<tr>
<td>11012</td>
<td>10</td>
<td>0.15 0.29 0.35 0.37</td>
<td>10012</td>
<td>65.5</td>
<td>0.74 0.67 0.45 0.42</td>
</tr>
<tr>
<td>11013</td>
<td>613</td>
<td>0.24 0.38 0.44 0.46</td>
<td>10013</td>
<td>150.8</td>
<td>0.71 0.66 0.47 0.45</td>
</tr>
<tr>
<td>11014</td>
<td>214</td>
<td>0.03 0.16 0.21 0.22</td>
<td>10014</td>
<td>539.2</td>
<td>0.66 0.75 0.56 0.51</td>
</tr>
<tr>
<td>11015</td>
<td>232</td>
<td>-0.04 0.08 0.14 0.15</td>
<td>10015</td>
<td>376</td>
<td>0.45 0.66 0.65 0.62</td>
</tr>
<tr>
<td>11016</td>
<td>590</td>
<td>0.17 0.29 0.35 0.36</td>
<td>10016</td>
<td>417</td>
<td>0.31 0.50 0.61 0.61</td>
</tr>
<tr>
<td>11017</td>
<td>463</td>
<td>-0.05 0.08 0.14 0.15</td>
<td>10017</td>
<td>256</td>
<td>0.15 0.33 0.42 0.43</td>
</tr>
<tr>
<td>11018</td>
<td>350</td>
<td>-0.14 0.00 0.05 0.06</td>
<td>10018</td>
<td>531</td>
<td>0.45 0.62 0.7 0.71</td>
</tr>
<tr>
<td>11019</td>
<td>258</td>
<td>-0.27 -0.13 -0.07 -0.06</td>
<td>10019</td>
<td>296</td>
<td>0.22 0.37 0.44 0.45</td>
</tr>
</tbody>
</table>

5. 결론

XP-SWMM모형을 사용하여 인천교 해체지 주변의 침수개선을 위해 조석간단에 의해 달라지는 유수위 수위와 관내 역류등의 현상을 고려하면서 4개의 대안을 설정하여 해석하였다. 해석결과 단순히 관계융합증대를 내용으로 하는 대안이 가장 많은 여유와 확보를 할 수 있는 것으로 나타났지만 투자비용이 지나치게 많아 합리적이지 못한 것으로 판단되었고, 주간설립부별 증대하는 대안 4의 경우 일정의 여유고를 확보하면서 침수해결을 도모할 수 있는 합리적인 대안이라고 판단되었다. 또한 인천교 해체지의 경우 유수위 수위에 따라 역류 및 수위상승이 나타나 이에 대한 영향이 큰 것으로 나타났고 기존의 관계융합 증대받으로는 침수개선을 도모함에 있어서 파도한 예산투자와 시간이 남비될 수 있는 것으로 나타났다.
감사의 글

본 논문은 (주)전력전기연구과 공동으로 수행되었습니다. 감사드립니다.

참고문헌