한도내 유로변화 특성 분석기법

손광익*, 한건연**, 문라영***

Kwang Ik Son, Kun Yeun Han, La Young Yun

요지

한도수를 취수원으로 하는 우리나라의 많은 취수장의 경우, 유사유업 및 유로 변경에 따른 취수장애를 겪고 있으나 유로의 변화특성을 분석하고 취수장 위치선택에 활용할 수 있는 실무적 기법에 대한 연구는 거의 없는 실정이다. 따라서 본 연구에서는 유로가 좌-우반으로 수시로 바뀌어 갑수기는 물론 평수기에도 취수장애를 겪고 있어 대책 강구가 요구되는 국내 취수장의 선정하고 취수지정의 계속적인 하상 및 유로변동 현상을 규명하여 안정적인 취수를 가능케 하는 근본적인 대책을 수립하기 위한 유로변화 특성 분석기법을 제시하였다.

연구내용으로는 과거 30여년에 걸친 하도의 평면적 변화양상을 인공위성영상자료, 지형도자료 및 하도 단면 설측자료를 활용하여 각 지점별 유로변화에 대한 분석을 실시하였다. 또한 하도의 전달응력, 마찰 속도 등을 측정하여 하상형태를 분석하여 대상구간의 효율점성을 분석하였다.

분석결과 하도의 사형은 지속적으로 진행되고 있음을 알 수 있으며 특히 취수장부터 상류 수km구간 하도에서는 발성이 지속적으로 생겼다. 사례는 현상이 반복되고 있음을 확인할 수 있었다. 취수장 주변에서는 유로의 변화가 하폭의 70%에 달하는 심한 유로변화 특성을 나타내고 있어 취수지정으로 적당치 못함을 알 수 있었으며 주변 상하류 섭수 수km구간 중에는 유로의 변화가 거의 없는 구간도 존재함을 알 수 있어 본 연구의 유로변화 분석기법이 향후 유로변화 분석 및 취수장 건설 위치 선정에 효과적인 분석기법으로 활용 가능할 것으로 입증하였다.

1. 서론

우리나라의 많은 취수장에서는 계층적인 하상 및 유로변동 현상에 의한 취수장애를 겪고 있어 이에 대한 대책 강구가 필요한 실정이다.

본 연구에서는 퇴사 및 유사문제를 앓고 있는 낙동강 본류내의 한 취수장을 선정, 현황을 조사하여 취수구 주변의 하상변동 조사 및 퇴사 발생특성 분석을 실시하여 취수장 주변의 유사권란 하팔공학적 현황을 분 석, 점검하여 안정적 취수대책수립은 물론 향후 건설예정인 취수장 위치 선정을 위한 실무적 기법을 제시하 고자 한다.

2. 취수장 현황분석

본 연구 대상으로 선정된 취수장에서는 2002년 홍수기시(태풍 푸사 내습) 취수장 앞 유로가 좌안에서 우안으로 변경되어 갑수기 취수에 어려움을 겪고 있어 이에 대한 대책 강구가 필요한 상황으로 최근 20년간 취수장 주변에서의 하상 및 유로변동 상황을 정리하면 다음과 같다.

* 정희원 · 영남대학교 토목도시환경공학부 부교수 · 공학박사 · E-mail : kison@yu.ac.kr
** 정희원 · 경북대학교 토목공학과 교수 · 공학박사 · E-mail : kshany@kyungpook.ac.kr
*** 영남대학교 토목도시환경공학부 토목공학전공 · 공학석사 · E-mail : holon9900@yumail.ac.kr
3. 유효특성 분석

3.1 하도 및 저형특성

낙동강 유역 조사단에서 1960년 및 1970년에 낙동강 유역내인 영남, 영남, 및 창녕 등 20개 지점에 대해 유효수량을 측정하여 각 유효면 계류량과 낙동강 홍수유역의 유효수량을 검토 분석하였다. 하천별 유사량 및 하천구조계의 입도분석, 하천구조계의 분류, 하천구조계의 특성을 분석하였다. 하천별 유량량과 계류량을 비교 하였으며, 낙동강 중상유역의 지질적 유량량을 검토하였다.

3.2 하도의 기하학적 특성

Lane(1967) 식에 의한 하도형태 관단 기준 식은 아래와 같이 이 식을 이용하여 하천의 형태를 사방하던 것이나 방상하던 것으로 분류할 수 있다.

\[
K = SQ^{1/4}
\]

\[
K < 0.0017 \quad \text{: 사방하천}
\]
\[
0.0017 \leq K \leq 0.01 \quad \text{: 전이하천}
\]
\[
0.01 < K \quad \text{: 방상하천}
\]

여기서, \(Q\) : 유량 (cfs)

분석 결과 취수량 중하위 유량 \(Q = 417,525~539,709\) cfs, 경사 \(S = 0.00026\)으로 비교적 사방과 방상하천을 오가는 불안정한 하도형태를 보일 것으로 예측되었다.

Schum (1963)은 하도형태를 만곡도를 활용하여 표현하고자 하였다. 사방도 분석에 의한 하도특성을 분석하기 위하여 인공위성영상자료를 이용하여 면도법 사방도를 산정하였으며 자유구간의 경사 \(S = 0.00026\), 사방도 \(p = 1.15~1.41\)으로 직선하천구간에 속하는 특성을 보이고 있다.

또한 만곡도\(I_p\)에 따른 서식적 구분에 따르면 S2 또는 S1 단계로 사방 형태가 심하지 않은 하천의 특성을 보이고 있다.
3.3 하상의 형태특성

하상형태를 예측하는 도학적 기법으로는 Shields diagram, Simons and Richardson, Athauallah, Charbert와 Chanvin, Engelund와 Hansen 방법(Simons, Li&Associates, Engineering Analysis of Fluvial System, 1982)이 있다. 표 1에 나타나는 바와 같이 대부분의 하상구간은 Lower Flow regime에 속하여 100년년도 홍수에 대해서는 dune의 특성을 보일 것으로 예측된다. 따라서 본 하상구간은 홍수에 대한 저항이 크고 유사량은 심하지 않은 특징을 지니고 있는 것으로 판단된다.

표 1. 하상형태 예측을 위한 선정표

<table>
<thead>
<tr>
<th>단변번호</th>
<th>stream power</th>
<th>R/D₉₀</th>
<th>U/U₀</th>
<th>Shields</th>
<th>Charbert</th>
<th>Simon</th>
<th>Athauallah</th>
<th>Engelund</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>468</td>
<td>0.079</td>
<td>10152</td>
<td>10.32</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>0.063</td>
<td>9628</td>
<td>9.93</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>0.507</td>
<td>10488</td>
<td>10.07</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>0.121</td>
<td>11918</td>
<td>9.88</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>0.192</td>
<td>12086</td>
<td>9.91</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td>취수장</td>
</tr>
<tr>
<td>452</td>
<td>0.157</td>
<td>12006</td>
<td>9.90</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>0.228</td>
<td>8619</td>
<td>9.85</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>444</td>
<td>0.090</td>
<td>9676</td>
<td>10.03</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>0.444</td>
<td>18428</td>
<td>10.15</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>436</td>
<td>0.559</td>
<td>18066</td>
<td>10.12</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>0.321</td>
<td>13312</td>
<td>10.01</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>428</td>
<td>0.668</td>
<td>11293</td>
<td>9.74</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>T</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

여기서, D₉₀ : Median Sediment Size, R : Hydraulic Radius, U : Flow Velocity, U₀ : Shear Velocity
D : Dune, T : Transition, L : Lower Flow Regime

4. 위성영상자료를 이용한 분석

4.1 위성영상자료

4.2 하도평면변동특성

유심부의 좌장은 반복적으로 길었다가 짧아지는 변화를 보이고 있으며 취수장 주변 및 취수장 상류 8km 지점 두 곳에서는 발침이 주기적으로 생겼다. 사라지는 현상이 반복되어 안정적이지 못한 반면 낙동대교주변에서는 유심부의 변화가 가장 작아 안정적인 하도의 형상을 보이고 있음을 알 수 있다.

4.3 하도변화의 통계적 특성

5. 결론

본 연구는 연구대상 귀수장의 해양문제 해결을 위한 주변 환경의 각종 화석수리특성 현황자료를 분석하고, 추수량에 따른 환경 변수 특성 및 영향을 파악하고 이를 통한 추수량에 대한 해양환경의 최적의 방안을 고려하고자 하였다. 이와 같은 목적을 달성하고자 수행된 본 연구의 결과는 다음과 같다.

2. 하도의 진단성격, 마찰속도 등을 산정하여 하양형태를 분석하였으며 과업구간의 하천은 Low flow regime의 특성을 나타낸다.
3. 하도의 사전은 지속적으로 진행되고 있음을 알 수 있으며 특히 추수량 상류 약 8km 지점부터 22km 구간에 대한 유표의 변화특성을 분석한 결과 추수량 상류 8km 지점으로부터 추수량까지의 하도에서는 발달이 지속적으로 진행되었다. 사라지는 현상이 반복되고 있으며 유표의 변동이 하물의 70%에 달하는 심한 유류변화특성을 나타내고 있어 추수지점으로 적합지 못함을 알 수 있다. 추정번호 428, 432, 442, 464(1963년 기준)가 유류의 변화가 가장 작은 구간으로 확인되었다.

참고문헌

1. 김광모, 김영균(1981.6) '80 낙동강 하상변동조사, 대구지방국토관리청, 낙동강개발건설사무소
2. 김광모, 조성부(1982.6) '81 낙동강 하상변동조사, 부산지방국토관리청, 낙동강개발건설사무소
3. 박종욱, 최재수, 이순철, 안경수, 김성권, 김정식(1997.11) 낙동강 본류 유도변경예측연구, 한국수자원공사
4. 홍영하, 김채언(1993.4) 낙동강 하천정트 기본계획(보안Ⅲ) (남강합류부-반변동합류부), 건설부