MS/TP 프로토크를에서 대역폭활당기법구현 및 실험적 검증

Implementation of Bandwidth Allocation Scheme in the MS/TP Protocol

홍승호*, 송원식**, 권영찬***
(Seung Ho Hong, Won Seok Song, Young Chan Kwon)

Abstract - Digital communication networks have become a core technology in advanced building automation systems. BACnet(Building Automation and Control networks) is a standard data communication protocol designed specifically for building automation and control systems. BACnet adopts Master-Slave/Token-Passing (MS/TP) protocol as one of its field level networks. In this study, we introduce a method of implementing bandwidth allocation scheme in the MS/TP protocol. The bandwidth allocation scheme improves the capability of real-time communication of the original MS/TP protocol. The bandwidth allocation scheme introduced in this paper can be easily implemented in the existing MS/TP protocol with a slight modification. In this study, we actually developed the hardware and firmware of MS/TP module in which bandwidth allocation scheme is implemented.

Key Words : BACnet, MS/TP, Bandwidth allocation, building automation and control, communication protocol

1. 서 론
지능형 디지털화 제어 시스템은 디지털 전자 시대의 실시간 보편화와 제어를 요구한다. 디지털 시스템은 서비스에 대한 요구치가 증가함에 따라 보편형 마이크로 프로세서 기반의 제어 시스템이 널리 보급되기 시작하였다. 디지털 통신 네트워크는 지능형 디지털화 시스템의 핵심 기술로 자리잡았다. [1-3].
BACnet(Building Automation and Control networks)은 디지털 자동화를 위해 특별히 설계된 국제 표준 데이터 통신 프로토콜이기 [4]. BACnet은 필드 레벨의 네트워크의 Master-Slave/Token-Passing (MS/TP) 프로토콜을 적용하고 있다. MS/TP 프로토콜은 다양한 제어 기능 수행과 특정 어플리케이션의 통작을 위해 주로 필드 레벨의 네트워크로 사용된다.
MS/TP 프로토콜이 필드 레벨의 네트워크에 널리 사용되고 있지만, 많은 데이터 전송을 요구하는 어플리케이션 시스템의 실시간 통신에서는 한계가 있다. 이는 필드 레벨의 주기적 서비스와 동기신호 사양을 위해 사용한 대역폭활당 기법의 기본 개념이 많다. [5]. 이론과의 연구 [6-8]은 대역폭활당기법이 다른 종류의 산업용 통신 네트워크에서 적용될 수 있음을 보였다. 본 연구에서는 MS/TP 프로토콜에서 대역폭활당기법을 대역폭활당기법의 주기적으로 발생하는 실시간 BACnet 서비스 메시지의 요구사항을 만족시킨다. 또한 최대한 빌리

2. BACnet과 MS/TP에 대한 개요
최근의 디지털화 시장과 제어 시스템들은 난방, 통풍 및 공기 조절장치(HVAC), 조명, 화재 및 life-safety 시스템, 보안 및 이동장비 등의 다양한 병렬 서비스를 제공한다. 이러한 디지털 서비스들은 통합된 제어 네트워크를 통하여 보다 안전하고 효율적으로 관리할 수 있다. 예외적인 네트워크 시스템은 필드 소유주들이 원하는 유연성 및 확장성과 같은 통합된 병렬 기능을 하는데 있어서 서로 호환되지 않는 중요한 문제점을 가지고 있다. 이러한 문제점을 해결하기 위하여 ASHRAE(American Society of Heating, Refrigerating, and Air-conditioning Engineers)는 디지털화와 제어 네트워크에 있어서 특별히 설계된 국제 표준 통신 프로토콜을 개발하였다.
BACnet은 이러한 정보에 접근하려면 처리할 수 있도록 하는 필드 레벨의 시스템과 어플리케이션 계층 프로토콜의 구성요소로 교환되는 정보의 형태를 표준 오브젝트로 나타낸다. 또한 서로 연결되어 있는 인터넷으로부터 다양한 시스템 네트워크 정보를 전달하는 방법을 제공한다. 네트워크 계층은 BACnet 네트워크를 임의의 구조와 복잡한 인터넷 아키텍처에 어울린 연결 유형(서로 연결시키는 방법)을 제공한다.
BACnet은 비교적 LAN 기술을 제공하며 데이터 링크 계층 프로토콜을 위해 인터넷(PTP) 프로토콜을 제공한다. 네 가지 LAN 기술에는 Ethernet, ARCNET, MS/TP 그리고
3. MS/TP 프로토콜에서의 대역폭합당기법

다음은 MS/TP 프로토콜의 대역폭합당기법을 구현하기 위해 필요한 조건이다.

(1) 주기적으로 생성되는 서비스 메시지는 제한된 시간 내에 도달해야 한다.

(2) 임금 서비스 메시지는 시스템 암상 또는 최대한 빠른 송수신을 위해 시스템의 상태 변화를 가리킨다.

(3) 프로토콜의 수정이 필요하면 수정된 MS/TP 프로토콜은 기존의 MS/TP 프로토콜과 호환성이 유지되어야 한다.

BACnet은 시스템 설계자가 서비스 메시지의 형태를 다양한 내각 개발로 분류할 수 있도록 하고 있다: life-safety, critical equipments, urgent, normal. 그러나 이런 요구 파악이 기존의 MS/TP 프로토콜에서 사용하지 않는다. 본 연구에서 MS/TP 프로토콜을 사용하는 내각 개발 파의 메시지 타입을 정의한다: 긴급 메시지, 주기적 요청 메시지, 주기적 응답 메시지(주기적 요청에 대한 응답 메시지), 일반 메시지.

MS/TP 프로토콜의 성능은 “서비스 지원시간”으로 평가된다. 서비스 지원시간은 하나의 BACnet 서비스가 완료한 전송기간까지의 경과 시간으로 정의한다. BACnet confirmed service의 서비스 지원시간은 클라이언트의 요구(Request) 메시지가 생성된 시점부터, 이 메시지가 서버 노드에 전송된 후, 다시 응답(Reply) 메시지가 클라이언트 노드로 도달하는 시간까지 소요된 총 지원시간으로 정의한다. BACnet unconfirmed service의 서비스 지원시간은 클라이언트에서 생성된 요구 메시지가 서버 노드에 도달할 때까지의 소요 시간을 의미한다. 대부분의 BACnet 서비스들이 confirmed 서비스로 이루어져 있기 때문에 본 연구에서 소개한 대역폭합당기법은 confirmed 서비스의 서비스 지원시간을 만족시키기 위해 설계되었다.

MS/TP 네트워크 시스템은 N 개의 노드로 구성되며, 각 노드는 간격, 주기적 요청, 주기적 응답 또는 일반 메시지 전송 큐를 가지고 있다. 이런 큐들 간의 조합을 가지고 있다. 만약 N 노드가 한 환경 이상의 메시지를 생성하면, 서로 다른 태일의 메시지는 분리된 큐를 사용한다. 토렌트의 나노도에 도달했을 때, 메시지를 전송 큐에 저장한다. 우선순위가 가장 높은 메시지는 긴급 메시지이며, 그 다음으로 주기적 메시지와 일반 메시지가 있다.

\[N_c \rightarrow \text{브로드캐스트 메시지 전송 채널} \]

그림 1 MS/TP 프로토콜의 대역폭합당기법

그림 1은 MS/TP 프로토콜의 대역폭합당기법에 관한 기본적인 개념에 대해 보여준다. 미디어의 대역폭은 주기적 요청 메시지, 주기적 응답 메시지 그리고 일반 메시지 채널로 분할된다. 주기적 요청 메시지는 다중 시험을 사용하여 그에 해당하는 대역폭 구간을 통해 전송된다. 서버 노드가 주기적 요청 메시지 손실 후, 즉시 주기적 응답 메시지를 생성한다. 그러나, 주기적 응답 메시지는 즉시 전송되지 않고, 그 노드가 메시지를 전송할 기회가 있을 때 주기적 응답 구간을 통해 전송된다. 주기적 응답 구간은 T_maxproc가 정해진 즉시의 요청 채널의 응답 시간에 설정된다. T_maxproc는 MS/TP 프로토콜 대역폭합당기법을 위해 새롭게 정의된 내부 파라미터이다. T_maxproc는 주기적 요청 메시지 전송 시간과 서버에서 주기적 응답 메시지를 생성하기 위한 필요한 프로세싱 시간을 포함한 최대 프로세싱 시간으로 결정된다. 일반 메시지가 일반 메시지 구간을 통해 전송된다. 일반 메시지의 전송 이유는 서버가 이용할 수 있는 어떠한 구간에서도 전송이 가능하다. 주기적 요청과 주기적 응답 구간은 \(r \) 전송수단에 기반하며, 메시지 체크한 이외의 전송수단을 통해 전송된다. 대역폭합당기법은 각 구간 동안 발생한 주기적 요청 메시지의 생성 숫자가 \(r \) 개를 넘지 않도록 스케줄한다. 그러기 위해서 시스템 설계자는 데이터 생성 주기 \(T_i = T \) 의 첫 데이터가 생성되는 시점 \(i \)의 1을 \(N_c \)가 결정한다. 주기적 메시지의 요구 시일간을 만족하기 위하여 \(T_i \)는 \(N_c \)를 넘지 않아야 한다. 또한, \(r \) 가지는 주기적 구간동안 생성되는 주기적 메시지의 양을 제한하기 위하여 \(T_i = N_c \)의 값은 서로 정수 수의 관계를 가지어야 한다. 그러한 \(T_i \)는 다음과 같이 결정한다.
\[T_i = T_0, \]
\[T_i = k_i T_{i-1}, k_i = 2^{\left\lfloor \log_2 \frac{a_k}{T_j} \right\rfloor}, i = 2 \text{ to } N_c \] (1)
주기적 구간에 있는 원도우의 크기 \(r \)은 다음과 같이 결정된다.
\[r = \left[a_k \right] \] (2)
여기서 \(a_k = \sum_{i=1}^{N_c} \frac{1}{T_i} \)로 \(T_i \) 동안 생성된 주기적 메시지의 평균 수이다.
대역폭협동기법에서 추가된 요구사항은 \(r \)을 갖는 주기적 구간동안 생성되는 주기적 데이터의 양을 제한하는 것이다. \(u^2(A_i) \)을 \(A_i \) 시점에서 생성된 주기적 데이터의 개수라 하고, \(A_i \)를 \(T_{N_c} \) 솔롯 내에 있는 \(i \) 번째 \(T_i \)의 주기적 구간 시작 시점이라 한다. \(i \) 번째 솔롯의 첫 번째 주기적 데이터의 생성 시점은 다음과 같다.
\[t_i = \min[A_i \geq u^2(A_i) \leq r_i], \]
\[i = 1 \text{ to } N_c, 1 = 1 \text{ to } k N_c, A_0 = A_1 \] (3)
대역폭협동기법에서 \(T_i(i = 1 \text{ to } N_c) \)는 서로간에 정수배의 관계로 정해진다. 데이터 생성주기 \(T_i \)는 식 (1)에 의해 결정되고 이에 체계된 최적 허용 지연시간 \(t_i \)는 넘지 않는다. 따라서, 주기적 메시지의 요구한 지연시간을 만족할 수 있다. 대역폭협동기법을 구현하기 위하여 네트워크에 있는 각각의 \(N_c \) 노드들은 시간 동기화가 되어야 한다.

4. 기존 MS/TP 프로토콜의 수정
MS/TP 프로토콜의 변경사항을 완료하기 위해 기존의 MS/TP 프로토콜을 수정해야 한다. 그림 2는 수정된 MS/TP 프로토콜의 스케일링어선을 보여준다. 그림 2에서 보는 바와 같이 기존의 MS/TP 프로토콜에서 단지 하나의 새로운 “PASS TOKEN FOR CYCLIC” 스케일링어선이 추가되었다. 이와 함께 대역폭협동기법을 위해 다음의 네트워크 파라미터들을 새로 정의한다.
Nmode: 전송 상태를 나타내는 노드 파라미터로 다음과 같은 값을 가진다.
- NORMAL: 일반 메시지 전송 가능상태.
- CYCLIC REQ: 주기적 요청 구간이 시작된 상태.
- CYCLIC REPLY: 주기적 응답 구간이 시작된 상태.
- ENFORCED CYCLIC: 주기적 요청 구간이 시작된 경우

Ncycle_start: 주기적 요청 구간을 시작한 노드의 고유번호를 나타내는 노드 파라미터.
Ncycle_max: 주기적 메시지를 생성하는 노드 수 중 가장 높은 수를 나타내는 네트워크 파라미터.
NScycle: 주기적 요청 또는 주기적 응답 구간이 시작되었음을 알리는 메시지를 생성하기 위한 최대 프로세스 호출 수.

그림 2. MS/TP 대역폭협동기법의 상태 전이도

대역폭협동기법에서 MS/TP 네트워크에 있는 모든 노드들은 이러한 메시지를 전송하려고 하는지를 결정하기 위해 현재 이력한 대역폭 구간에 있는지를 알아야 한다. PASS TOKEN FOR CYCLIC 상태에서 토큰을 송신할 다음 노드를 결정한다. 만약에 Tno_cycle 타이머가 만료되면, 노드는 토큰을 NScycle로 전송하고 주기적 요청 구간을 시작한다. 이러한 상태는 Tno_cycle 기간 동안에 주기적 요청 구간을 시작할 수 있도록 보장한다. 추가된 PASS TOKEN FOR CYCLIC 상태에서 노드가 현재 이력한 대역폭 구간에 있는지를 알기 위해 몇몇의 다른 상태들 (IDLE, USE TOKEN, PASS TOKEN)에 약간의 수정이 필요하다. 이를 위해 새롭게 정의한 파라미터들이 위에 나열되어 있다.

5. MS/TP 모듈 개발
본 연구에서는 대역폭협동기법을 구현한 MS/TP 모듈을 개발하였다. MS/TP 모듈은 daughter board 형식으로 개발되었으며 특정한 형태의 어플리케이션으로 BACnet 네트워크와 이 스키마 전송 구간을 구현한 BACnet base board에 장착할 수 있다. 그림 3은 분 연구에서 개발한 MS/TP 모듈의 구성도를 보여준다. MS/TP 모듈은 CPU, RAM, DPRAM (Dual Port RAM)로 구성되어 있다. MS/TP 모듈은 ATMega8515 CPU을 사용한다. 부트 프로그램과 MS/TP 프로토콜 코드는 CPU 내부에 있는 플래시 메모리에 탑재되어 있다. 외부 SRAM은 데이터 메모리로 송신과 수신을 위한 메시지 버퍼로 사용한다. MS/TP 모듈은 DPRAM을 통해 BACnet base board와 데이터를 교환한다. MS/TP 인터페이스 카드는 어드레스 비교, 데이터 비교, 그리고 EIA-485 인터페이스를 제공한다. 그림 4는 본 연구에서 개발한 MS/TP 모듈의 사진이다.
대역폭 할당 기법은 기존의 MS/TP 프로토콜에 최소한의 수 정을 더함으로써 간편하게 적용할 수 있다. 본 연구에서 대 역폭 할당기법이 구현된 MS/TP 모듈의 하드웨어와 절차를 설명하였다.

MS/TP 프로토콜에 구현된 대역폭 할당기법의 성능 향상을 검증하기 위해 실험 모델을 개발하였다. 그림 6은 실험 모 델의 예상 형태이다. 그림 6에서와 같이 실험 모델은 12개의 노드로 구성된다. 노드 0은 성능 분석을 위해 네트워크 전체 전송되는 프레임을 수집하여 PC로 전송하는 모니터 노 드로 설계하였다. 실험모델을 사용함으로써, 대역폭 할당기법 이 구현되었음을 알 수 있으며abela이 있는 시스템 전달시간을 비교 분석할 것이다. 그러기 위해 이를 위한 실험과 그 결과를 분석할 필요가 있다.

그림 5는 MS/TP 모듈의 하드웨어 구성도이다. MS/TP 프로토콜은 MS/TP 프로토콜, 시리얼 통신, DPRAM 인터페이스 그리고 타이머 제어 함수 등으로 구성 되어 있다. 시리얼 통신 함수는 EIA-485 인터페이스로부터 수신한 메시지를 MS/TP 프로토콜 함수에 전달하며, 또한, EIA-485를 통해 메시지를 전송한다. DPRAM 인터페이스 함수는 MS/TP 프로토콜 함수와 BACnet base board에 있는 상위 계층의 프로토콜 스텝과 메시지를 교환하는 역할을 하 다.

6. 결론 및 향후 과제
본 연구에서 MS/TP 프로토콜의 대역폭 할당기법의 구현 방법에 대해 소개하였다. 대역폭 할당기법은 기존의 MS/TP 프로토콜의 실시간 통신 기능을 향상시킨다. 본 논문에 제시된