Cubic Spline 곡선을 이용한 곡선 차선 인식에 관한 연구

A Study on the detection of curve lane using Cubic Spline

강 성학, 정 차근
Sung-Hak Kang, Cha-Keon Cheong

Abstract - This paper propose a new detection method of curve lane using Catmull-Rom spline for recognition various shape of the curve lane. To improve the accuracy of lane detection, binarization and thinning process are firstly performed on the input image. Next, features on the curve lane such as curvature and orientation are extracted, and the control points of Catmull-Rom spline are detected to recognize the curve lane. Finally, Computer simulation results are given using a natural test image to show the efficiency of the proposed scheme.

Key Words: Catmull–Rom spline, curve lane detection, vanishing line.

1. 서론
최근 들어 천단기술을 이용한 지능형 자동차에 관한 연구가 국내외적으로 이루어지고 있다. 그 중에서 비전 시스템을 이용한 차선의 인식은 지능형 자동차 구현에 핵심요소 기술의 하나이다. 일반적인 차선은 매우 다양한, 복잡한 형상의 나타내고 있으면서도 인식, 비전 시스템을 이용해서 보다 정확하게 차선을 인식하기 위해서는 영상처리에 관한 보다 많은 연구가 요구된다. 특히 각각 차선의 인식에 있어서는 기존에 많은 연구[7]가 수행되어 부분적으로 사용화도 진행되고 있으며, 우선 차선은 형상의 다양함으로 인해 보다 정확하게 차선을 인식하기 위해서는 새로운 인식기법의 개발이 필요하다.

본 논문의 구성은 2장에서 전처리 과정과 vanishing line을 검출 하는 방법을 기술하고, 3장에서 Catmull–Rom spline 곡선에 대한 간단한 설명과 제한된 알고리즘을 이용하여 제어점 검출하는 기법을 기술하고, 4장에서 합니다 영상에 대한 제한 방법의 유효성을 검증하고, 5장에서 결론을 기술한다.

2. 전처리 과정 및 Vanishing line 검출
2.1 전처리 과정
입력영상에 포함된 다양한 형태의 점은 영상처리 과정에 많은 영향을 미치므로, 영상을 최소화 할 수 있도록 점들을 제거하는 것이 요구 된다. 또한 입력영상의 방향성 정보도 갖고 있으므로, 실제 영상처리를 위해서는 알고리즘에 적합한 형태로 가공해서 정보량을 줄이는 것이 필요하다.

그림 1은 자선 검출을 위해 전처리 과정은 수행하는 알고리즘을 나타낸 것이다. 입력영상의 cantidad는 morphological 연산과 median filter를 사용하여 제거하고, 1차원 히스토그램의 하나인 sobel 마스크로 응산선 추출을 수행한다. 추출된 응산선에서 필요한 정보만을 추출하고 간단한 영상으로 표현하기위해서 이진화 및 세분화 알고리즘을 사용하여 처리하였다. 그림2는 사선의 전처리 과정에 의한 결과의 예를 나타낸 것이다.
2.2 Vanishing line 검출
수평선과 교차되는 차선을 vanishing line이라 한다. 이 수평선을 검출함으로, 차선과 배경을 분리하여 그에 따른 불필요한 정보를 추출함으로 계산량을 줄일 수 있고, 3장에서 기술하는 정확한 제어점을 검출하기 위해 필수적인 과정이다.
Vanishing line은 수평선이므로, 영상의 수평축으로 투영했을 경우 막막이 가장 많이 모인곳이 될 것이다. 이 특성을 이용하여, 본 논문에서도 vanishing line을 검출 한다.

\[\sum \{ d(n) = x(n) - x(n-1) \} \]

이제 첫 검출 참고리즘

3.2 세이점 검출 알고리즘

3. Catmul–Rom spline곡선 이용한 차선 검출
3.1 Catmul–Rom spline
Catmul–Rom spline보간법은 컴퓨터 그래픽에서 다양한 곡선을 그리기 위해서 사용된 보간 방법이다. 그림 4와 같이 주어진 시점 (1)의 Catmul–Rom spline 함수에 의해 각 세이점 사이가 부드럽게 곡선으로 보간되어 지는 기법이다. 이 Catmul–Rom spline 보간법을 이용하면, 실제 차선 차선의 형상은 다양하기 때문에, 차선에서의 정확한 제어점을 검출함으로써 유연성을 높은 다양한 차선을 검출 하게 된다.

\[p(t) = 0.5 \left((2 \times p(1)) + (p(0)+p(3)) \times t + (2p(0) - 5p(1) + 4p(2) - p(3)) \times t^2 + (p(0) + 3p(1) - 3p(2) + p(3)) \times t^3 \right) \]

\[p(0) \]
\[p(1) \]
\[p(2) \]
\[p(3) \]

이제 첫 검출 참고리즘

3. 세이점 검출 알고리즘

3.2 세이점 검출 알고리즘

3. Catmul–Rom spline곡선 이용한 차선 검출
3.1 Catmul–Rom spline
Catmul–Rom spline보간법은 컴퓨터 그래픽에서 다양한 상황을 그리기 위해서 사용된 보간 방법이다. 그림 4와 같이 주어진 시점 (1)의 Catmul–Rom spline 함수에 의해 각 세이점 사이가 부드럽게 곡선으로 보간되어 지는 기법이다. 이 Catmul–Rom spline 보간법을 이용하면, 실제 차선 차선의 형상은 다양하기 때문에, 차선에서의 정확한 세이점을 검출함으로써 유연성을 높은 다양한 차선을 검출 하게 된다.

\[p(t) = 0.5 \left((2 \times p(1)) + (p(0)+p(3)) \times t + (2p(0) - 5p(1) + 4p(2) - p(3)) \times t^2 + (p(0) + 3p(1) - 3p(2) + p(3)) \times t^3 \right) \]

\[p(0) \]
\[p(1) \]
\[p(2) \]
\[p(3) \]

이제 첫 검출 참고리즘

3. 세이점 검출 알고리즘

3.2 세이점 검출 알고리즘

3. Catmul–Rom spline곡선 이용한 차선 검출
3.1 Catmul–Rom spline
Catmul–Rom spline보간법은 컴퓨터 그래픽에서 다양한 상황을 그리기 위해서 사용된 보간 방법이다. 그림 4와 같이 주어진 시점 (1)의 Catmul–Rom spline 함수에 의해 각 세이점 사이가 부드럽게 곡선으로 보간되어 지는 기법이다. 이 Catmul–Rom spline 보간법을 이용하면, 실제 차선 차선의 형상은 다양하기 때문에, 차선에서의 정확한 세이점을 검출함으로써 유연성을 높은 다양한 차선을 검출 하게 된다.

\[p(t) = 0.5 \left((2 \times p(1)) + (p(0)+p(3)) \times t + (2p(0) - 5p(1) + 4p(2) - p(3)) \times t^2 + (p(0) + 3p(1) - 3p(2) + p(3)) \times t^3 \right) \]

\[p(0) \]
\[p(1) \]
\[p(2) \]
\[p(3) \]
재어짐 2는 차선 후보군에서 구한다. 모든 차선 후보군을 재어짐 2로 가정한 후, 앞서 구한 재어짐 1, 3을 이용하여 spline 곡선을 그린 후 spline 곡선과 차선 후보군과의 거리의 차가 최소인 점을 재어짐 2로 정한다. 식 (3)은 spline곡선과 차선 후보군과의 거리를 구하는 방법을 나타낸다.

점 \(P(x_k, y_k) \)에서 직선 \(ax+by+c=0 \) 사이의 거리이다. 여기서 정점은 차선후보군이고, 직선은 spline곡선이 된다. 점과 직선사이의 거리를 구하는 공식을 이용한다.

\[
\text{Min} \sum_{x} \left(d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \right)
\]

4. 실험결과 및 결론
본 논문에서 사용된 실험 영상은 실세계의 도로 영상을 이용하였다. 영상의 크기는 256x256 크기의 gray영상이다. 그림 7은 차선 후보군을 검출한 결과를 나타내고 있다. 차선 후보군에서 재어짐 2를 설정한 후 그에 따른 spline 곡선과 차선 후보군과의 거리의 차이를 그림 8에 그래프로 나타내었다. 그림 8에서의 최소인 값을 재어짐 2로 설정하여, 극선 차선을 검출한 결과를 그림 9와 10에 나타내었다.

5. 결론
본 논문에서는 Catmull–Rom spline 곡선을 이용하여, 차선 검출에 적용하는 방법을 제시하였다. 제작한 새로운 재어짐과 정확한 vanishing line을 검출함으로써, 실제 극선 도로와 거의 일치하는 spline곡선을 검출할 수 있었다. 이것은 정지 영상에서의 실험으로, 실제 도로에서의 동영상과 마호 환경에 따라 생길 수 있는 낭차, 또는, 조명등의 외부환경 요소에 의한 vanishing line의 부정확한 검출과 차선 후보군의 정확한 검출로 실제 차선과 상관없는 spline곡선이 많다. 이를 해결하기 위해서는 radar 센서나 laser센서와 함께 복합적인 데이터를 함께 처리하여 강한 극선 검출 기법이 요구가 될 것이다.

참고 문헌