RF를 이용한 다양도 데이터 통신 모듈 구현

Development of RF Module for Data Communication

이찬주*, 이홍호**
Chan-ju Lee, Heung-ho Lee

Abstract - 본 논문에서는 RF를 이용한 다양도 데이터 통신 모듈의 설계와 제작에 관하여 논하였다. RF통신에 대한 기존적인 이론과 작황범위 등을 살펴보고, 신뢰성 있는 통신을 위해 나온의 프로토콜을 적용하였다. 통신거리 개선을 위해 전력중복을 시도해본다, 안테나 압력준자에 관한 연구를 해 보았다.

Key Words : RF, communication

1. 서론
오늘날 여러 가지 용도의 데이터를 취득하고 가공하는 일들은 다양한 분야에서 일어나고 있다. 데이터를 취득함에 있어서 무선, 특히 RF를 이용한 통신의 방법은 널리 사용되고 있다. RF를 이용하여 Tag를 통신을 송신하고 Tag에서 송신된 전자파를 데이터를 송신하거나, 자체 전원을 기동하여 데이터를 취득, 송신하는 역할을 수행할 수 있다. 다른 무선 통신에 비하여 본 연구에서 이용한 RF 통신은 무선을 통한 후 Tag를 몫 전원으로 사용할 수 있다는 점과 이를 분야에 따라서 그 구조를 간단히 구성할 수 있다는 장점이 있다. 하지만 전력 송신하므로 송신할 수 있는 거리의 한계가 단점이다.
무선으로 데이터를 송, 수신함에 있어, 그 대신에 따라 RF 통신을 적절히 적용할 수 있다. 특히, 애완동물, 방사선, 모바일 등의 이유로 대상에 접촉을 할 수 없거나, 극한의 상황에서 간단한 구성만으로 적절한 통신을 할 수가 있으며, 비스카드와 같이 무선으로 전자파 데이터를 저절로 하는 경우, Tag를 둘어두고 가로로 필요시 Reader가 그 데이터를 읽을 수 있는 구조로 많이 이용하고 있는 실정이다. 현재 RF통신에 대한 연구가 지속적으로 진행되고 있으며, 전력 효율과 통신 거리, 통신 속도 등의 향상에 그 초점을 두고 있다.
본 논문에서는 기존에 연구되어 있던 일반적인 RF 통신 모듈의 구성을 살펴보고, 그 구성을 필요로 하는 여러 가지 기술적인 문제들을 다루어 보고자 한다.

2. RF형 TAG 및 Reader

2.1 RF형 도시메타의 전면적인 구성

그림 1. RF형 통신 모듈 SET
RF형 통신모듈 SET은 그림 1과 같이 크게 TAG부와 RF Reader부로 구분할 수 있지만, TAG부는 제어부, 센서데이터 취득부, EEPROM, 신호변환부, 주변회 스위치, LCD 출력부로 구성될 수 있으며, 제어부는 모든 시스템의 제어를 담당하는 역할을 하고, 일반의 처리를 통하여 방사선량의 정보를 초당 2Byte 정보로 가공하고 안테나를 통하 여 RF 신호로 신호의 형태로 내 보낼 수 있다. 이때 RF Signal 감지부, 제어부, 신호 변환부, EEPROM, 데이터 처리부, LCD 출력부로 구성되는 RF Reader가 통신을 통해 외부에 전달한다. RF Signal 감지부가 이 RF 신호를 감지하고 이 때 감지된 신호를 제어부에 전달하면 제어부에는 인터럽트가 걸리게 되고 계속적으로 들어오는 신호를 신호 변환부가 Digital 신호로 변환하여 제어부에 전달하게 되는데, 2Byte의 정보 중 1Byte는 12bit A/D 결과의 상위 6비트가 되며, 다른 1Byte는 하위 6비트 값을 의미한다. 또한 EEPROM에 저장된 정보는 차후 분석을 용이하게 하는 기능을 수행한다.

2.2 RF형 TAG
기존에 개발된 종속성 선행계에 RF 통신 기능을 추가한 형태로 RF 통신기능 외에 주변전 철학을 위하여 RF Reader에서 발생하는 신호를 감지하여 주변전을 스키우지 않게 하는 기능이 추가된 것이 특징이다. 송신 및 반응을 취득할 수 있으나
2.3 안테나 부

안테나 부는 RF 동작을 수행함에 있어서 가장 중요한 부분 중 하나로, 전파의 방향성과 강도를 결정하는 중요한 요소입니다. 이 부분은 RF 전파의 전파 방향을 결정하고, 전파의 강도를 조절하는 역할을 합니다. 안테나는 주파수에 따라 동작하는 특성을 가지고 있으며, 주파수에 따라 전파 방향과 강도가 달라집니다.

2.4 RF형 Reader

RF형 Reader는 어떤 주파수에서도 동작가능하게 설계가 가능하며, 여기서는 사용가능하게 만든 13.56MHz 주파수를 이용하여 설계가 가능합니다. 주파수는 13.56MHz에서 전파가 일으키기 위한 적절한 L과 C값의 선택이 필요하며, 안테나의 모양과 L, C의 값은 MicroChip사의 Application Note Antenna Circuit Design For RF Applications, RF ID Coil Design을 참조하였으며, 언급된 주파수 13.56MHz에서 전파가 일으키기 위해 마법 속에서 제시된 조건을 가지고 적절한 L과 C값을 산출하였습니다.
2.5 Power Amplifier
전력 증폭기 부분을 말하며, 안테나 코일에 큰 자기장을 일으키기 위하여 전압 보다는 전류의 크기가 발생되는 자기장의 크기에 비해하게 된다.

그림 5. RF 안테나 절연용선원리
 클리 주파수의 신호에 따라 IRF510의 Gate가 스위칭 되면서 전력이 증폭된다. P-spice의 시뮬레이션 상에서는 400mA 이상의 전류가 안테나 코일에 호르는 것을 볼 수 있었다.

그림 6. 전력증폭 시뮬레이션을 위한 회로도

그림 7. 전력증폭 후 안테나에 호르는 전류

2.6 Envelope Detector
다이오드, 저항, 캐패시터로 구성된 간단한 회로로서 임의 파형의 피크값을 detector 하는 기능을 수행하며, 본 reader에서는 13.56MHz와 스위칭 신호선은 각종 스위칭 신호선을 검출하는 결과적인 기능을 수행한다.

그림 8. Envelope Detector의 회로도

그림 9. Envelope Detector 시뮬레이션 결과

그림 10. 실제 회로의 Envelope Detector 단에서 검출결과

<그림 10>을 보면 응용 처리된 부분들은 Envelope Detector를 거쳐 여러계단에서 분리되어진 부분이며, 큰 응용각도 작은 응용들이 데이터가 High로 처리되어야 하는 구간들이 다.

2.7 데이터의 송, 수신

그림 11. 수신 신호

그림 12. 수신 신호
데이터들을 인련의 채널로 보기 위하여 스코프의 시간축을 2초 간격으로 늘린 상태의 파형이 <그림 11>에 나타나 있다. 0과 1과 색별 가능하다.

<그림 12>에는 READER의 비교기를 거쳐 디지털화 된 수신데이터의 파형을 보여 주고 있다. <그림 11>의 총신 데이터와 유사한 모습을 나타내고 있으며, 이 수신 파형은 PIC16F876의 B7번 포트에 입력으로 되면서 비트반전 인터럽트를 발생 시키게 된다.

3. 결론
본 연구에서는 RF형 TAG와 RF READER를 제작하여 일부러 실험을 수행하였고, 두 장치 간 통신실험을 통하여 송신 데이터를 RF 형태로 수신하여 표시함을 볼 수 있었다. 제작된 장치들은 여러 가지 부분에 용용 가능하다. 하지만 실질적인 응용이전에 및 가치 사항에 대한 보완이 필요해질 수 있어야 할 것이다.

보완 사항으로는 데이터 취득 거리의 한계를 돌 수 있다. 현재 설계된 안테나 구조 및 Tuning 기술로는 10cm 이내의 통신거리가 가능하지만, 직접한 LC 값을 계산 및 적용을 통한 전력 증폭 주파수에서 정확한 운전점을 찾는 것이고, RF READER 안테나의 크기 증대 및 POWER AMP의 기능을 강화하여 1A 이상의 전류를 READER 안테나 코일에 호르게 하면 상당한 통신거리의 한계가 있을 것이다.

앞으로의 연구는 안테나 회로의 정확한 동작을 이해하고, 적절한 LC의 제작을 위한 요소들을 찾아 적용하고, POWER AMP의 기능으로 향상하는 것과 ADC, DAC, CPU등의 기능을 단순화 시켜 전력으로 동작할 수 있는 회로를 설계하는 방법을 모색하는 것이 중요하다.

참고 문헌

668