Development of Monitoring System for Interconnection of Distributed Generation with Power Grid

O. Oh*, Y. Son**, K. Kim***
(Sung-Nam Oh, Young-Ik Son and Kab-Il Kim)

Abstract - Owing to the environmental problems as well as increasing energy prices and power plant construction costs, many researches have been made for the safe operation of distributed generations. In order to be more popularly used in parallel with the distribution network, the distributed generation and its correlation with the power system should be exactly monitored at any time. This paper presents a monitoring system which displays the important states of the distributed generation in operation and stores various measurements of the system. The proposed system constructs a data-base for developing algorithms against any faults of the interconnected system, and monitors efficiently at any place with the communication network function.

Key Words : Electric power, Distributed Generation, Monitoring System, Data Base

1. 서론

전력계통 규모의 대형화와 구조의 복잡화로 인해 동결과 안정성이 중요한 사항으로 대두되고 있다. 분산전원은 대규모전원의 보완하고 비교적 환경부가 적은 에너지원을 이용하며, 다양한 에너지원의 효율적 사용이라는 이점을 가지고 있다. 특히, 소규모로 생산되어 격진에 연계되는 분산전원은 전력수요자와 소비자가 근거리에 접해있는 장점이 있는 반면 전력변환에 의한 역조류 문제나 고조파, 역류, 단독전원 방지로 인해 전력계통의 안정성 및 불안정한 현상을 가져온다는 입목의 단점이 있다.(3)(6)

본 논문에서는 분산전원은 계통연계운용 모니터링 시스템을 설계, 작동하여 분산전원 연계운용을 실시간 감시, 모니터링하여 분산전원 계통 연계시 발생할 수 있는 부정적인 현상을 보완하기 위한 연구의 필요성을 마련하고자 한다. 즉, 전력 에너지원을 보다 효율적으로 운용하기 위해서는 분산 전원들 을 계통에 보다 적극적으로 연계하여 활용할 수 있어야하고, 이를 위해서는 연계 운용 상황을 정확하게 감시하고 동반상황을 명확하게 판단할 수 있어야 한다. 그러기 위해서 사고를 정리하는 기존의 규약들을 토대로 감시 알고리즘을 구현한다.(1)(2)본 연구 결과로 얻어진 감시 시스템은 데이터를 처리, 저장함으로써 그 결과로부터 신뢰도 높은 지능적인 연계 알고리즘을 얻는데 중요한 역할을 할 것이다. 또한 더 나아가 기존의 광역 네트워킹을 사용하여 원격 모니터링 시스템의 사용과 Data Base구축으로 보다 효율적이고 체계적인 전력계통의 안정화를 위한 기반을 세우는데 기여할 것이다.

이로 인해 전력생산 이용의 절감을 가져오며 세계적 추세인 전력 시장 개방시대에 경쟁력 있는 전력공급이 가능하도록 일조할 것이다.

2. 모니터링 시스템

2.1 시스템 구성

그림 1은 모니터링 시스템의 블록도를 나타내고 있다. 모듈로 이루어진 시스템은 PC를 기반으로 운용된다.
연계되어 운송되는 분산전원을 실시간 감시하기 위한 정보는 IED (Intelligent Electric Device)로부터 적절한 통신방식으로 전송된다. 통신 유닛(Community)에서 전압, 전류 등의 데이터를 수집한다.

2.2 세부 기능
전력 토플 및 사고를 분석하고 감시하기위해 많은 기술적 사람이 있다. 본 연구에서는 기능별 유닛을 사용하여 효율적으로 감시하는 모니터링 시스템을 구현한다. 각 기능을 담당하는 유닛들은 독립적으로 동작하며 체계적, 전반적인 방식으로 전의 기능을 하게 된다. 다음은 각 기능 유닛에 대한 설명이다.

2.2.1 메인 루틴(Main Thread)
모니터링 시스템의 각 기능은 액세스하는 주체어로 우선 깊은 Thread를 생성하여 효율적인 감시 알고리즘을 구현한다. 실시간으로 이루어지는 모든 작업은 독립적으로 이루어지지만 세부 기능 비튼에 의해 선택되고 각 기능에 대한 상황들을 나타내게 된다.

2.2.2 연결(Connection/Disconnection)
하위 IED와의 연결을 위한 모든 기능을 수행한다. 통신 모드를 설정하여 연결된 장치와 통기를 맺기며 실시간으로 IED의 이상 유무를 감시하고 연결 상태를 확인한다. 따라서 SCAIDA (Supervisory Control and Data Acquisition) 등 상위 전력 시스템과 연계를 위한 연결 기능도 가지고 있다.

2.2.3 전압/전류 (Volts/Amps)
IED에서 측정하여 수집된 전압 및 전류의 파형을 시각적으로 이용하여 분석한다. 또한 전압과 전류의 허용치를 포함한다. 사고 시 고장결과의 비교를 위해 사고 전후의 전압 파형을 전압과 전류의 Trend를 관찰한다.

2.2.4 전력 (Power Quality)
항의 변화와 갱신을 상세하게 나타내는 기능이다. 실시간으로 분석된 전력의 전압과 전류의 허용치를 전압과 전류의 trend를 관찰하며 전력의 요소를 갱신하였다. 또한 참고용 전력 요소를 산출할 수 있다.

2.2.5 측정 (Revenue Measurements)
IED로부터 실시간으로 수집된 분산전원의 전압, 전류 정보를 분석하여 전력량을 산출한다. 또한 참고용 전력 요소를 산출할 수 있다.

2.2.6 설정 (Setting)
IED가 각종 과장과 감지하고 정확한 동작을 하기 위해서는 여러 설정 요소가 있다. 모니터링 시스템에 연결된 IED의 동작을 정정하는 기능을 한다. IED의 각종 정정은 원격으로 시험 가능하며 각 정정법에 대한 알고리즘을 구현하여 간단하게 동작 정정을 한다.

2.2.7 디지털 입력/출력 (Digital Inputs/Outputs)

2.2.8 보고서 작성 (Report)
감시하는 모든 데이터를 저장하려면 멀티한 양의 저장 공간이 필요하다. 기존의 IED는 소량의 기억장을 가지고 있어 주기적인 데이터 수집을 해야 하는 문제를 가지고 있다. 이러한 문제를 해결하기 위해 대용량 기억장을 갖춘 모니터링 시스템을 기초로 한다. 보고서 기능에서는 실시간으로 수집되는 모든 정보는 시간 순으로 저장되며 보로 Fault 파형 등 사고 내역을 Time Index와 함께 저장한다. 또한 단기 및 장기 보고서를 자동 작성하고 출력하는 기능을 한다.

2.3 화면 구성
그림은 모든 모니터링 시스템의 화면이다. 각 기능에 대한 화면은 세부 기능 비튼을 선택했을 때 나타난다. 그림은 전력의 정보와 상태를 그래프와 테이블로 나타내며 통신이 용이하다. 전압의 상호작용 및 순서는 문자 창에 표시된다. 상단의 기능 선택 비튼으로 각 세부 기능을 액세스하여 동작 시킨다.

그림 2 화면 구성

2.4 통신
전력 기호의 상태를 실시간으로 감시하는 시스템은 많은 양의 데이터를 신속하게 처리해야 한다. 이를 위해 PC를 기반으로 본 연구에서는 3중류의 통신방식을 사용한다. 표준 IED와 모니터링 시스템 간에 사용하는 통신방식을 나타낸다. RS-232 통신 방식은 각종 설정 및 테스트를 하는데 사용한다. 단자간에서는 비교적 느린 통신이 사용되는데 근거리로서 장치 간의 간단한 응선에 이용된다. RS-485 방식은 RS-232 방식보다 데이터 전송 속도가 빠르며 N:N 접속으로 다수의
장치들과 효율적으로 연결 가능하다. 계통에 연계된 분산전원의 실시간 감시에 사용되는 모든 데이터를 RS-485 방식으로 전송 받는다. Ethernet은 모니터링 시스템이 다른 시스템에 연결 되었을 때 사용한다.

<table>
<thead>
<tr>
<th>통신 종류</th>
<th>통신 방식</th>
<th>통신 속도</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>1:1 통신</td>
<td>최대 500Kbps</td>
</tr>
<tr>
<td>RS-485</td>
<td>N:N 통신</td>
<td>최대 10Mbps</td>
</tr>
<tr>
<td>LAN(Ethernet)</td>
<td>N:N 통신</td>
<td>최대 100Mbps</td>
</tr>
</tbody>
</table>

모니터링 시스템에서 가장 기본이 되는 통신은 오차 없이 얼마나 벌리 데이터를 송신하고 수신하는 데에 중점을 둔다. 그림3은 계층적 통신 구조를 보여주고 있다. 통신 구조는 크게 Software Layer와 Hardware Layer 두 부분으로 나뉜다. Software Layer에서는 전송해야할 데이터를 Packet단위로 변환하거나 수신한 Packet을 다시 데이터로 바꾼다. 변환된 데이터는 Hardware Layer의 통신 드라이버를 통하여 송신되거나 수신된다.

[그림 3 계층적 통신 구조]

3. 결론

본 논문에서 다루어진 분산전원용 모니터링 시스템은 기존의 것들과는 달리 계통에 연결되는 분산전원의 감시뿐만 아니라 전력계통과의 연계시 일어나는 사고를 감시하여 안정적인 전력공급을 목표로 하였다. 이를 위해 전압 전류 등 자 정보를 IED (Intelligent Electric Device)로부터 수집하고 분석하여 상황을 판단하고 빠르게 대처할 수 있게 한다. 모니터링 시스템은 매크로 기능과 각각의 세부기능을 두어 효율적인 감시 기능을 수행한다. 감시 알고리즘은 IEE의 규격에 따르며 데이터를 처리, 저장함으로써 그 결과로부터 신뢰도 높은 지능적인 연계 알고리즘들을 얻는데 중요한 역할을 한다. 또한 태양광기존의 광섬 내역학을 사용하여 원격 모니터링 시스템의 사용과 Data Base구축으로 보다 효율적이고 체계적인 전력계통의 안정화를 위한 기반을 세우는데 기여한다.