A Fault Diagnosis on the Switching Mode Power Supply

Seung Chan Baik*, Jin Ho Lee**, Byung Joo Oh***, Yung Han Lee****

Abstract - This paper proposes a method of fault diagnostics on switching mode power supply. When the error of switching mode power supply cannot be found when the conventional diagnostics is performed, this proposed method first performs diagnosis on the switching mode power supply strictly to judge the operating condition. This method analyzes the PWM wave which depends on the load change, to make sure the feedback control of the power supply to diagnosis the operation of the power supply system.

1. 서론

오늘날의 전자 제어 기기는 작고 성능이 우수한 제품이 요구되고 있다. 그래서 전자 제어 기기에서 상당한 부품을 차지하고 있는 전원 공급 장치의 소형화는 필수적이다. 전원 공급 장치의 소형화를 위해 스위칭 파워 서플라이가 광범위한 분야에서 사용되고 있다.

제자, 발전 설비 등 중요 기기의 안전성, 의료 및 정보 시스템 등 전자 제어 공급 장치는 실시간 컨트롤을 위해 높은 정밀도 및 신뢰성을 요구한다. 이를 위해 전원 공급 장치의 소형화는 필수적이다. 스위칭 파워 서플라이는 전자 제어 장치의 성능을 높여주며, 에너지 효율을 향상시키는 데에도 기여한다.

2. 관련연구

1.1 스위칭 파워 서플라이
소형화, 경량화, 대용량이 요구되는 민수용 및 산업용 기기에서 기존의 일반적인 전원 방식은 용량에 한계가 있고 또한 부하가 높을 때 업계의 순환을 위해서 사용상 제약이 따르게 된다. 기존 전원 방식인 시리즈 컨버터 방식은 상용 주파수(50Hz~60Hz)를 이용한 방식으로 효율과 무게, 용량 면에서 사용상 제약이 따르는 문제점이 있다. 이러한 점을 개선하고 대체하기 위하여 새로운 기술로 발전 되어진 것이 스위칭 모드 파워 서플라이 전원 방식이다. 이 방식은 상용 주파수를 DC로 변환하고, 이를 높은 주파수(수십 kHz~수백kHz)로 변환하는 방식을 사용하기 때문에 이러한 고려도의 기술이 필요하다.
주파수 변환 시각기는 PWM 방식으로 전원를 이용함을 극대화하면서 높은 효율을 나타내며 경제성 면에서도 기존의 방식에 비해 높은 경제성을 가진다. 또한 전원의 안정도가 크게 향상되어진다[1].

--

Fig 1. General Switching Mode Power Supply Circuit

* 백승찬: 한국대학교 국제 IT 교육센터
** 이진호: 대림엔지니어링 기술개발 기술자
*** 오병주: 한국대학교 전자공학과 교수
**** 이영훈: 한국대학교 전자공학과 교수
1.2 일반적인 전단기술

스위칭 모드 파워 시험에 의해 일반적인 전단 기술은 전원을 인가하지 않은 상태에서의 시험과 전원을 인가한 상태에서의 시험의 효과가 있다. 전원을 인가하지 않은 상태에서의 시험은 속도, 소자 등의 특성, V-I 곡선을 통한 부품 영향 상태 시험 등이 있고 전원을 인가한 상태에서의 시험은 부하 시험과 무부하 시험이 있다[2][3].

그림 2는 전원을 인가하지 않은 상태에서의 V-I 곡선을 통한 부품 영향 상태 시험 과정이고 그림 3은 전원을 인가한 상태에서 50% 부하 리플 시험 과정이다.

그림 2. V-I 부품 영향 전단 시험
Fig 2. Fault Diagnosis of V-I Trace

그림 3. 50% 부하 리플 시험
Fig 3. Ripple Waveform at 50% Load

3. PWM 파형분석에 의한 전단

일반적으로 스위칭 모드 파워 시험에 의해 고장 전단 시 V-I 곡선을 통한 부품 영향 상태 점검 및 부하 시험, 무부하 시험의 출력 파형 분석을 많이 사용한다.

그림 2의 경우에도 각 2.5V의 구형과 시험결과와 인가하기 때문에 고 전압, 전류에서의 손실에 대하여는 정확한 전단이 어렵다. 또한 IC의 경우 제조사마다 내부구성이 차이로 다가지 때문에 실제 같은 기능을 하는 IC이더라도 V-I곡선이 서로 다르게 나타나는 경우가 있어서 전량판정이 어렵다.

부하에서 리플 전압 및 출력 전압 측정을 통해 그림 4, 5의 오른쪽은 리플 전압과 리플 전압이 원활한 상태에서는 보이고 왼쪽 그림은 리플파경이 불안정하여 불량한 것처럼 보여서 불량하다고 판정될 수도 있다. 그러나 그림 4, 5의 오른쪽 그림의 전압측정은 정비가 필요한 파워스플라이이고 원쪽 그림의 전압측정은 전류상에 전혀 문제가 없었다. 따라서 일반적인 전단 기술로 양부 판정이 정확하지 않을 경우가 존재한다는 것을 알 수가 있다.

그림 4. 70%부하 리플전압 및 출력전압
Fig 4. Ripple and Output Voltage at 70% Load

그림 5. 무부하 리플전압 및 출력전압
Fig 5. Ripple Voltage and Output Voltage at 0% Load

그림 6. 부하인가후 전원상실시험 출력파형
Fig 6 Out of Power Test for 24 hour

그림 4, 5의 전장 파워 시험에 의해 일반적인 전단 기술로 이상이 없다고 판정하여 사용하던지 22시간 만에 전원상실이 발생하였다. 그림 6은 그림 4, 5의 전장 파워 시험으로 50% 부하와 플리커(Flicker) 신호에 대한 몇일이 구동을 통해 전원상실 시험을 한 결과, 그림 6에서의 같이 전압이 0V로 멀어져서 부적합 판정이 되었다.
그림 7. 부하증가시 정상 PWM 과행

Fig 7. Increasing Load, Seeing Normal PWM Waveform

그림 8. 부하증가시 비정상 PWM 과행

Fig 8. Increasing Load, Seeing Abnormal PWM Waveform

형과형태로 변환하여 트랜스포머에 전달한다. 이때 PWM 과형의 왜곡이 발생하면 스위칭소자의 스위칭 타이밍 왜곡이 발생하므로 트랜스 1차 층 전원파형의 불균형이 발생하여 출력 불안정의 원인이 된다. 그러나 출력 층의 차력통과 필터의 영향으로 출력파형의 왜곡은 어느 정도 보상이 되어지기 때문에 부하시험 시 출력파형을 통한 부하 판정을 하기 더 이상 어렵게 된다.

따라서 스위칭 모드 파워서 يول라이의 정밀점검을 실시하여 부하 판정을 결정할 때 일반적인 전단기술 외에도 부하 변화에 따른 PWM 과형 분석을 통해 피드백 제어가 원활하게 되고 있는지를 점검해야 보다 정확한 전단을 할 수 있다.

참고 문헌

[2] 한국서부발전(주) 보수 및 정비지침서,
[3] 한국서부발전(주) 폐기물수거 지침서

*알림: 본 논문은 과학기술부 지역협력연구사업 지원으로 수행되었음.(R12-2003-004-03001-0)

4. 결 문

스위칭 모드 파워서 يول라이의 전진성 전단시 PWM 과형 분석을 통해 피드백 제어가 원활하게 되어지는지를 점검하는 것이 필요하다.