의료용 수중충격파에 의한 대상물의 진동해석

박규칠, 류수아, 장윤석 부경대학교

Vibration Analysis of Phantom Induced by Shock Wave for Medical Treatment

Kyu-Chil Park, Soo-Ah Ryu, Yun-Seok Jang Pukyong National University {kcpark, jangys}@pknu.ac.kr

요약

압전식 충격파 쇄석기를 사용하여 대상물을 파쇄하는 과정에서 발생하는 음의 특성을 조사한 결과, 대상물이 파쇄됨에 따라 방사음이 더욱 저주파대로 이동한다는 사실을 알았다. 이 사실을 입중하기 위하여 대상물의 파 쇄상태를 모델링한 대상물을 사용한 실험에서는 동일한 결과를 관측할 수 있었다. 따라서, 본 논문에서는 실험적 으로 추정된 연구결과를 이론적으로 확인하기 위하여 유한요소법을 이용한 수치 시뮬레이션을 실험과 유사하 게 모델링한 대상물에 실행하였고, 시뮬레이션에서 관측 된 결과를 제시하여 대상 연구결과의 유효성을 입중하 였다.

1. 서론

압전식 충격과 쇄석기를 사용하여 결석을 치료할 때 는 항상 음이 발생한다. 이 발생음에는 대상물이 충격과 에 충격됨으로써 발생되는 방사음이 포함되어 있다고 정의를 내릴 수 있는 연구결과가 나와 있다[1]. 그 중에 는 대상물의 진동과 방사음을 비교하여 그 관계를 관측 하여 대상물이 방사음의 발생 위치라는 결과를 관측한 연구결과도 있었고[2], 음원의 위치를 추적하여 대상물이 방사음의 발생지라는 사실을 관측한 연구결과도 있었다 [3].

대상물의 진동과 방사음의 관계를 추정한 연구에서는, 압전식 충격파 쇄석기로 충격파를 발생시켜 결석에 가 까운 음향임피던스를 가진 모델에 조사(照射)하면서 그 파쇄과정을 관찰한 결과, 대상물의 파쇄형태에 따라 대 상물의 진동이 보다 저주파대로 이동한다는 사실을 실 험적인 결과로 제시하고 있다. 아울러 재현성있는 재질 의 모델을 사용한 실험으로 파쇄과정에 따른 주파수의 변화에 대한 동일한 결과를 확인하였다.

본 연구에서는 실험적으로만 제시되었던 앞의 연구결 과가 이론적으로도 유효하다는 사실을 입중하는 것을 목적으로 하여 유한요소법에 의한 수치적 컴퓨터 시뮬 레이션을 수행하여 얻은 결과를 제시한다.

2. 유한요소법에 의한 컴퓨터 시뮬레이션

탄성체의 진동 문제의 경우, 외부에서 가해지는 힘과 변위와의 관계는 다음의 이산화 방정식[4]

$$([K] - \omega^2[M])\{d\} = \{f\}$$
(1)

으로 주어진다. 여기서 *w*는 각 주파수, [K], [M]은 각각 게의 강성 행렬(stiffness matrix), 질량 행렬(mass matrix) 이고, {*d*}, {*f*}는 각각 계의 모든 절점에 대한 변위 벡터, 외력 벡터이다.

그림 !은 유한요소법 계산을 위한 3차원 요소분할 모 델로서, 각 요소는 직육면체의 형태이며, 원통형 황동봉 에 최대한 가깝게 요소분할하였다. 그림의 a), b), c)는 각각 1회도 충격파를 조사하지 않은 쵸크의 원상태, 200 회 정도의 충격파를 조사하여 2mm 정도가 부서져 나간 상태, 그리고 600회 이상의 충격파를 조사하여 6mm 정 도가 부서져 나간 상태를 이용하여 계산 모델로 선정한 것이다. 사용된 재료정수로는 재질은 황동(Brass)을 사용 하였고, 영률은 9.02E10[N/m']이며, 포아송 비는 0.3, 그 리고 질량의 밀도는 8440[kg/m']으로 크기는 10mm × 10mm × 60mm이다.

그림 2-4는 유한요소법에 의한 계산 결과로서, 식(1)의 외력 {f}에 대한 변위 속도 {d}를 나타낸 것으로 입력 어드미턴스의 혀수부분에 해당한다. 그림 2는 그림 1의 (a)를 대상몰로 한 계산결과로서 7.525kHz에서 피크주파 수가 표시되고 있으며, 그림 3은 그림 1의 (b)를 대상물 로 한 계산 결과로서 이것 또한 6.570kHz에서 피크주파 수가 표시됨을 알 수 있고, 또한 그림 4는 그림 1의 (c) 툴 대상물로 한 계산결과로서 2.895kHz에서 역시 피크 주파수가 표시된다.

그림 2. 대상물 (a)의 입력 어드미턴스 특성

그림 3. 대상물 (b)의 입력 어드미턴스 특성

그림 4. 대상물 (c)의 입력 어드미턴스 특성

3. 결과 및 고찰

이상의 계산 결과로부터 충격파에 의한 파쇄과정이 진행될수록 대상물에 있어서 초점영역 부분이 부서져 없어지게 되고, 초점영역 부분이 파쇄되어 없어질수록 피크주파수가 낮아진다는 사실을 알 수 있다. 개산치와 실험치의 결과를 보다 정량적으로 나타내기 위하여 대 상물의 초점영역이 부서져 없어진 부분의 크기에 따른 피크 주파수의 변화를 비교하여 표 1 및 그림 5에 나타 낸다.

[표 1] 파쇄 부분의 두께에 의한 피크 주파수의 실험치 및 계산치의 변화 비교

<u>구</u> 분 공진주과수	실험치(kHz)	계산치(kHz)	오차(%)
대상물 (a)	7.5	7.525	0.33
대상물 (b)	6.9	6.570	4.78
대상물 (c)	3.5	2.895	17.28

※ 각 결과에 대한 오차율 계산

| (실험치 - 계산치) / 실험치 | ×100%

그림 5. 파쇄 부분의 두께에 의한 피크 주파수의 변화

참고문헌

[1] Hiroshi Kanai et al, Power Difference in Spectrum of Sound Radiation before and after Break of Phantom by Piezoelectric Extracorporeal Shock Wave Lithotriptor, JJAP, Vol.33, No. 5B, pp. 3159-3161, 1994.

[2] 장윤석, 김석재, 의료용 충격파에 의해 발생하는 음 원 위치의 확인, 의공학회, 24권 5호, pp. 453-458, 2003.

[3] Y. S. Jang et al, Measurement and Analysis of Vibrations on Surface of Phantom Induced by Piezoelectric Extracorporeal Shock Wave Lithotriptor, JJAP, Vol. 35, No. 5B, pp. 3163-3166, 1996.

[4] 加川辛雄, 有限要素法による振動音響工學/基礎と應用, 培風館, 1995.