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Abstract

An efficient technique for the calculation of guided wave dispersion curves in composite pipes is presented.
The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process
required when using the more traditional partial wave superposition technique. The formulation of each method
is outlined and compared. The forward-calculating formulation is used to develop finite element software for
dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures,
including an isotropic bar, two multi-layer composite bars, and a composite pipe.
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1. INTRODUCTION

Composite tube and shaft structures are being used
increasingly in a variety of weight-driven designs of
critical structures, including automotive, aeronautical
and aerospace applications. Due to the high cost of
composite materials and their high susceptibility to
certain from events such as tool drops, effective,
efficient methods of nondestructive evaluation (NDE)
are crucial to maintaining the safety and integrity of
these systems. One such NDE technique is the use of
ultrasonic guided waves, which have the ability to
rapidly detect defects at large distances[1].

One major hindrance to the use of ultrasonic guided
waves in the NDE of composite shafts is the difficulty
of efficiently calculating dispersion curves for these
structures. of
dispersion curves fail for composite materials. The

Conventional methods calculating
necessary assumptions of isotropy, homogeneity, and a
lossless medium do not hold for the Helmbholtz
decomposition, and the iterative process necessary for
wave superposition (PWS)

the partial technique
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becomes too cumbersome with the introduction of
direction-dependent elastic constants. Therefore, the
goal of the current effort is the development of a
numerical method for the calculation of dispersion
curves in composite tubes. To this end, a numerical
study has been used to develop a computer package on
guided wave propagation characteristics using the
semi-analytical FEM technique in conjunction with the
variational calculus formulation of the elastic energy
induced by guided wave propagation in composites.

2. MATHEMATICAL BACKGROUND

Mathematical formulation of the computational
technique begins with the transformation of Navier's
(differential) Equation of motion into an integral from
using Hamilton's principle. Next, an assumption of
time-harmonic wave excitation is made and Fourier
decomposition is performed on an arbitrary guided
wave packet to produce a number of continuous,
single-frequency sinusoids. In this study, the guided
wave propagation of the time harmonic wave form with
a single frequency is simulated as the expansion of the
corresponding modal wave motion at a reference point
in the pipe axial direction (the propagation direction) by
multiplying the phase change of the time harmonic
exponential function by the reference modal function.



This effectively reduces the dimensionality of the
system, dropping the axial component and leaving only
information for material properties, fiber orientation,
geometry, etc., at a given cross-section.

The integral goveming equation of guided wave
propagation is derived through the variational calculus
technique (VCT) for the functional in terms of the
energy terms induced by the wave motion. In other
words, physically this procedure is associated with the
one to find a wave field which minimizes the functional
and consequently satisfies the original differential type
governing equation. A numerical integration process is
then used to calculate each energy term for the integral
governing equation while imposing traction-free surface
boundary conditions on the shaft, yielding the guided
wave dispersion equation in matrix form.

Unlike a dispersion equation in matrix form derived
through a conventional differential approach such as the
Helmbholtz decomposition or PWS, the matrix of the
dispersion equations for the present study produce a
skew-symmetric matrix. This leads to a significant
advantage in root extraction since an iteration technique
with a proper initial guess is no longer needed, even for
a guided wave mode with complex wave number
(evanescent modes). In this form, a forward root-search
algorithm is sufficient for finding all possible guided
wave modes, both propagating and evanescent, without
time consuming iteration. Consequently, the divergence
problem in root search due to improper initial guess,
normally a significant computational obstacle, is
eliminated. Instead, the solution convergence and
accuracy of the present technique rely on the
cross-sectional mesh profile of the FEM grid. This
method still produces error inherent to numerical
integration techniques, but this error is less than that
produced by differential methods like PWS. Once a
solution has been obtained using VCT, its convergence
must be checked by varying the mesh to optimize for
accuracy and computational efficiency. Optimization
"LAPAC,"

available eigenvalue solution for vibration problems.

was performed using a commercially
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3. COMPARISON OF TECHNIQUES

Table 1 gives a comparison between PWS and VCT

methods of dispersion curve generation.

Table 1. Comparison of PWS and VCT
formulation of dispersion curves.

conditions

Step Partial Wave |Variational Calculus
Superposition Technique
Separation of Separation of

1 Variables Variables
(W,t); ei(kZth) (W,t); ei(kz~wl)
Develop governing| Develop governing
2 differential integral equation
equation
Assume a vector Make energy
3 displacement assumption (scalar)
for displacement
Use constitutive {Impose displacement
4 equations for and external force
stress conditions
Impose traction Derive stiffness
5 free boundary matrices with F=0

Set up dispersion
equations in terms
of stress (derived

Set up dispersion
equation using
displacement

requires good
initial guess

from stress (derived from
terms) general free
vibration equation)
Produce a Produce Hermitian
7 non-symmetric complex matrix
generalized matrix| with conjugates
Solve using Use typical
iteration-time eigenvalue
8 consuming and | solver—no iteration,

no initial guess

As discussed

above,

the VCT formulation

is

significantly more computationally efficient than PWS
due to the skew-symmetry of the resulting wave-vector
matrix; in effect, the VCT reduces the number of
unknowns to be determined for the final solution as well
as allowing for a more direct, non-iterative solution

process.



4. SUMMARIZED MATHEMATICAL
EXPRESSIONS FOR DISPERSION
CURVE DEVELOPMENT

The following outlines the principal equations used in
the development of dispersion curves by Helmholtz
decomposition, PWS and VCT.

4.1 Differential Calculus Techniques
4.1.1 Helmholtz Decomposition

The Helmholtz decomposition breaks down wave
displacement into two orthogonal components; it
uses (scalar potential + vector potential) to
represent overall wave displacement. Decomposing
and
of

homogeneity, isotropy, and an elastic medium. The

wave displacement into purely horizontal

vertical components requires  assumptions
basic process for Helmholtz decomposition is as
follows:

Begin with Navier's Equation for motion from

elasticity theory:

U
or’

(A+2)VVeU - yVxVxU=p M

The decomposition (scalar + vector potential):

U=Vd+VxH, VeH=0

@

This
equation into orthogonal components:

separation of the governing

[0

3)

allows the

H
o’

o)
ot

V[(/l+2y)V2¢—p ]+Vx[;N2H -p

Orthogonality of components allows the G.E. to
be separated into two separate components:
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Vg = 19 = _At+2u
ca’ "t p
iy 1 08H o, p
VH'C—;at” T, 4)
Traction free boundary conditions are then
applied on the surfaces of the structure:
0,=0,=0 at x,=*d/2=1h 5

Generating a system of equations to be solved
for the dispersion curves; for non-trivial solutions,
the determinant of [A] must equal zero:

Al 1 AI: AIJ AM AI 0 All Al! AI! AH
All AZZ A23 A24 AZ - 0 Del A:l A!Z AZS AH = 0
AJ 1 ASZ ASJ AJA Bl 0 AS 1 AJZ AJS AM
A“ AJZ A43 A« Bl 0 A4| A-12 A43 AU
©

4.1.2 Partial Wave Superposition

PWS differs from the Helmholtz decomposition
in that rather than breaking a wave into orthogonal
displacement components; it sums waves of all
polarizations and deterrnines wave modes through
interference analysis. PWS is typically used for
anisotropic, inhomogeneous media.

Formulation is based on decomposing a fraveling
wave into six components-upward and downward
traveling longitudinal, shear horizontal, and shear

vertical components:

U,=¢, exp[ik(x +Ilz)]exp[— ia)t] , I=1~6 (7

4.1.3 Variational Calculus Technique

As discussed above, the VCT is based on a
calculation of total wave energy rather than
displacement components. The mathematical process
of this technique is as follows:

Lagrangian and Hamilton's principle:

5E{T~(U+V5)}d1:0 ®



Where the kinetic energy is given by:

T =% “L i’ pid(vol)

€)
By Hooke's Law, the strain energy is:
1 T
U—EULS Ced(vol) 10)
The potential energy of the material is then:
v, =_”u’a, d(surf) (1)

Taking the Hamiltonian over a local element on
the cross-sectional FEM model of composite pipe,

n(x,y,z)%[#kz(x, P) 65, )+ ko, ) - 02, )]

(12)
the dispersion equation of guided wave
propagation along a composite pipe becomes:
([, 1+ K, ]+ (K, ]- 02 [M U} = 0} (13)
AV = KBV Det[A-xB]=0
Where,
_ U, e K,—o’M
KU, K, -oM K,

B- K,-o’M -
. KI

5. PATCH TEST RESULTS FOR CODE
VERIFICATION

Several examples of VCT generation of frequency
versus wave number dispersion curves are presented
below. Each has been verified with benchmarking data

from its corresponding reference.
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5.1 Isotropic Bar

The isotropic bar results presented have been
verified using [4]. The bar has a height to width
ratio (H/W) of % and a Poisson's ratio of 0.4.
Sixty four elements were used. Geometry is shown
in Figure 1; the resulting dispersion curves are in

Figure 2.

Fig. 1. Geometry of isotropic bar specimen.
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Fig. 2. Wave number dispersion curves for

isotropic bar.

5.2 Layered Composite Bars

Below are two examples of layered composite
bars, also from [2]). The first case, presented in
Figures 3 and 4 is a two-layered structure modeled
with 48 elements. Figures 5 and 6 show geometry
and results for a three layered structure, modeled
using 64 elements. Both structures have +30° fiber
H/W Y,
properties, which are provided in Table 2.

and identical material

orientations,



Table 2. Material properties of layered

composite bar specimens.

Ev Et Gur | Grr

Vir=

(GPa) | (GPa) | (GPa) | (GPa) | Vrr
2 I];?r’er 139.274| 15.167 | 5.861 | 6.268 | 0.21
3 ]é?r’er 139.274| 15167 | 5861 | 6.268 | 0.21
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Fig. 3. Geometry of two layer composite bar.
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Fig. 4. Wave number dispersion curves

for two-layer composite bar.
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Fig. 5. Geometry for three layer composite bar.
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Fig. 6. Wave number dispersion curves for

three layer composite bar.

5.3 Layered Composite Pipe

Finally, results are presented below for a composite
pipe specimen. The structure modeled had two plies of
graphite/epoxy with a layup of [0/90], an inside
diameter of 9.5 inches and an outside diameter of 10
inches. In this case, two models iterations were made,
the first with 120 elements and the second with 240.
Layup and element configuration is shown in Figure 7,
material properties are shown in Table 3, and Figures 8
and 9 show the 120 and 240 element model results,
respectively. In this case, phase velocity dispersion

curves are presented.

0 degree

90 degree

Fig. 7. Layup and element setup for composite
pipe model.



Table 3. Material properties of composite
pipe structure.

Ci | Co | Cia | Cuy | Cas [

(GPa)|(GPa)|(GPa)|(GPa) | (GPa)|(g/cx)
0° 11392 692 | 6.44 1160.73] 7.07 | 1.8
90°| 1392 644 | 692 11392) 707 | 18
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Fig. 9. Phase velocity dispersion curves for
composite pipe from 120 element model.

Phasa Velocity

Frequency
Fig. 10. Phase velocity dispersion curves for
composite pipe from 240 element model.

From Figures 9 and 10, it is important to note
the significant improvement in convergence resulting
elements.

from increasing the number of

Additionally, note that in several locations,

particularly at lower frequencies, multiple modes
appear to be present at closely grouped frequencies
where the 120 element model lacked the resolution

to make such a distinction.
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