식품건조를 위한 유도가열 기술 응용 연구

류 명효, 백 주원, 김 종현, 유 동욱, 임 근희
한국전기연구원

The Application of the Induction Heating Technology for the food dryness

M.H. Ryu, J.W. Baek, J.H. Kim, D.W. Yoo, G.H. Rim
Korea Electrotechnology Research Institute

Abstract - 본 논문에서는 400℃ 이상의 과열 증기 발생을 위하여 6kW급 유도가열장치를 개발하여 식품 건조 시스템에 적용한 예를 보인다. 유도가열장치는 파열 증기의 온도를 제어하기 위하여 인버터 입력 전압을 100~200V로 가변제어가 가능하게 하였고, 인버터 입력 전압은 벡터비전을 사용하여 기준 전압을 파열정비의 온도에 대한 전압 값을 사용하여 제어하였으며, LC 공전에 의해 발생한 전류로 증기 가열 체를 유도 가열하여 과열 증기 발생하게 하였다. 발생한 과열 증기는 식품 건조를 위하여 건조로 무_copy_ 고온 건조에서 식품의 건조시간을 단축시킬 수 있었으며, 식품의 손상 응을 줄 수 있었다. 이를 점검을 위하여 유도 가열 장치를 설계/제작하여 실험하였으며, 식품 건조 테스트를 행하였다.

1. 서 론

현재까지 식품 건조는 주로 저온의 열공을 이용하여 식품 손상을 최소화하기 위해 장시간 건조하였다. 열공 건조는 시스템 구성이 간단하고 설비가 다른 건조장치들에 비해 경제적이므로 현재 가장 많이 이용되어 왔다. 그러나 이러한 열공 건조에 식품 손상을 방지하기 위하여 저온에서 건조하므로 효율적인 건조가 힘들은 물론, 건조시간이 길어지는 단점이 있다.

이를 해결하기 위해 여러 가지 건조 기법들이 연구, 도입되어 왔으며 그중에서 대표적인 것이 동절 건조 방식이다. 이 방식은 무수한 건조 효율과 품질 상태를 보존할 수 있으나 모든 건조체계에 이용되기 못하고 있으므로 건조기간이 끝내 낮은 양의 열에 의하여 건조속도가 매우 느리고 일정과 건조 그리고 가열 등의 장비와 고가의 부대설비로 인해 전체 시스템의 비용이 상당량에 비해 매우 높은 단점이 있다.

한편, 열공 건조에서는 고온 건조는 보다 빠른 건조특성 을 얻을 수 있으나 식품 손상을 줄여주면서도 건조시간을 단축할 수 있는 방법의 하나로서 고려할 수 있는 것이 과열증기의 고온 건조이다. 과열증기는 100도에서 374도 사이의 수증기를 사용하여 점진적으로 넓은 건조효과가 있다. 이와 과열증기가 의미 있는 건조효과는 건조 물질에서 백색 조각으로 만든 전체 시스템의 비용이 크게 작아지고 가열장비의 설비를 점검하여 건조시간의 단축 그리고 환경오염이 없으며 건조제품의 품질이 우수한 장점을 얻었다.

본 논문에서는 과열증기 발생을 위한 시스템은 유도가열장치와 간접열기구를 이용하여 구성하고 전기역학적 증기의 온도를 제어한다. 유도가열장치는 크게 입력측 빅 컨버터와 출력측 공질형 플로브리 컨버터로 구성되며, 최대 출력은 6kW이다. 과열증기의 온도에 따라 빅 컨버터의 출력 전압을 가변하여 온도를 제어하였으며, 직접 공질 플로브리 컨버터의 출력측에 유도가열을 이용한 증기 발생 체를 설치하여 과열증기를 발생하였다. 발생한 과열증기가 건조로 무_copy_ 고온 건조에서 손상되는 것을 방지하였고 건조 시간을 단축시킬 수 있었다. 실험을 통하여 본 시스템의 타당성을 검증하였다.

2. 본 론

2.1 유도가열장치 구성

본 실험에서 구성한 전체 시스템을 아래 그림 1에 나타내었다.

(a) 유도가열 및 건조장치 (b) 전원 및 제어장치

그림 1 전체 시스템 사진

전체 시스템은 크게 유도가열부, 증기 발생 체를, 건조장치, 저온, 제어부로 나눌 수 있다. 본 논문에서는 전원 장치와 유도가열부, 증기 발생 체, 그리고 식품 건조에 관해서 논의하고 한다.

2.1.1 유도 가열부, 증기 발생 체를 및 전원 장치

본 실험에서 구성한 전원 장치 및 유도 가열부, 증기 발생 체를 아래 그림 2에 나타내었다.

(a) 전원 장치 (b) 유도가열부 및 증기 발생 체를

그림 2 전원 장치 및 유도 가열부, 증기 발생 체를

유도가열부를 급속하게 가열하고 과열 증기의 온도를 400도 내외로 유지하기 위하여 최대 출력 6kW급 전원 장치를 설계하였다. 전원 입력부는 빅 컨버터를 구성하여 출력 전압을 100V~200V로 가변할 수 있도록 설계하였고, 출력부는 직접 공질 플로브리 컨버터를 구성하여 유도가열부로 출력 전압을 유지하도록 하였다. 출력을 가변시키기 위한 방법으로는 1)출력부 적용
공진 품브리지 컨버터의 스위칭 주파수를 고정시키고, 
벽 컨버터의 출력 전압을 제어함으로써 가능하고, 2)벽 
컨버터의 출력 전압을 고정하고 출력부 컨버터의 스위칭 
주파수를 바꿔하여 공진 이득을 가변함으로써 또한 가능 
하다. 본 논문에서는 간단한 제어를 취하여 벽 컨버터의 
출력 전압을 제어하는 방법을 적용하여 구현하였다. 

먼저, 벽 컨버터는 그림 3에 나타낸 것과 같이 단상 
입력 220Vac를 전류가 310Vdc 전압을 100V~200V 
의 출력 전압을 얻을 수 있도록 제어하였다. 직접 공진 
품브리지 컨버터는 그림 4에 나타낸 것과 같이 입력 전 
압 200V, 스위칭 주파수 20kHz 근방에서 최대 출력 
6kW를 얻을 수 있도록 공진 파라메터 Lr, Cr을 설정 
하였다. 공진형 컨버터에서 양단의 스위칭을 연기 하여 
스위칭 주파수는 공진 주파수보다 크게 설정하였다.

![그림 3 벽 컨버터 회로도](image)

![그림 4 직접 공진 품브리지 컨버터 회로도](image)

직접 공진 품브리지 컨버터 출력단의 유도가열부는 3 
개의 변압기를 사용하여 1차선은 직렬, 2차선은 병렬로 
구성하여 변압기 설계를 용이하게 하였다. 직접 공진 
파라메터 Lr, Cr은 양단의 스위칭과 최대 출력 6kW를 발 
생할 수 있도록 설계하였다.

유도 가열부에 의해 증기는 발생하는 증기 발생 체버 
를 아래 그림 5와 같이 구성하였다. 그리고 증기 유도 
가열부는 간단히 변압기를 통해 발생한 유도 전류를 이용 
하였고 유도 가열부와 증기 발생관 사이에는 비저항성 
파이프로 설치하여 안전성을 확보하였다. 증기 발생관은 상화 
소질환, 고온시에는 사용가능한 inconel 관을 채택하였고 
효율적인 파열 증기 발생을 위하여 각 내부에 발열제를 
삽입하였다.

![그림 5 증기 발생 체버](image)

![그림 7 품브리지 컨버터 출력 전압(파형 2), 1차축 직렬 
공진 전류(파형 3), 1차축 변압기(TR1) 전압(파형 4) 
20μs/div.](image)

아래 그림 8은 가열된 유도가열부에 물을 투입하였을 
때 관을 통하여 증기가 발생하는 장면을 촬영한 것으로, 
프라스틱 상자에 하안 수중기에 발생하는 것을 알 수 있 
다. 실제로 유도 가열부가 충분히 가열되어 400℃ 정도 
의 파열 증기를 발생할 때는 관에 수분이 빠르지 않으며 
무색의 수증기가 발생하고 바람의 흐름과 부딪히며 
서 하안 수증기를 발생하게 된다.
발생한 파열 중기를 건조로에 투입하여 식품 건조 테스트를 행하였다. 건조로 내부온도는 180℃로 고정하고 건조로 내부 습도를 약 20~30%정도를 유지하도록 파열 중기를 투입하였다. 그러나 식품 건조시에 건조 초기에는 습도를 유지하면 식품이 손상되는 것을 방지할 수 있으나 건조가 어느 정도 진행되면 습도를 유지하더라도 타는 현상이 발생하였다. 따라서 각각의 식품에 따라 건조 중 조되는 비율을 달리 하여 식품이 손상되기 전에 실험을 중단하였다. 그러므로 고온 건조에서 건조하는 것은 저온에서 건조하는 것보다 건조 속도가 빨라 뒤어날 수 있었다. 아래 그림 9는 몇 가지 식품에 대한 고온 건조 테스트 실험 결과를 나타내고 있다.

![그림 8 파열 중기 발생 사안](image)

(a) 생강 건조(100% -> 28.9%, 1시간 20분)
(b) 버섯 건조(100% -> 41.38%, 1시간)
(c) 당근 건조(100% -> 68.8%, 15분)

그림 9 건조 테스트 결과

파열 중기를 이용한 고온 건조 테스트는 식품 성분 및 건조 시간에 달성되는 장점이 있지만, 식품이 손상되는 것을 완전히 없애 수는 없다. 따라서 건조 초기에는 고온에서 건조를 하여 어느 정도 건조된 후에는 저온 건조에서 마무리를 하는 것이 바람직할 것이다.

3. 결 론

본 논문에서는 6kW급의 유도가열 전원장치를 제작하여 유도 가열에 의해 발생한 파열중기를 식품 건조에 적용하였다. 유도 가열 장치는 출력 제어를 위한 백 컨버터, 유도 전류 발생을 위한 직렬 공진형 콤플리지 컨버터, 건조 후의 식품의ач, 건조 전의 식품의 합성 등으로 사용되었다. 그 결과, 식품의 성질을 고려한 적절한 가열 조건을 통해 유도 가열 파열중기 건조를 성공적으로 실현할 수 있었다.