통신에 미치는 영향을 고려한 고조파 대책 수립에 관한 연구

김응하, 정영식, 박병주, 이성준, 이영민, 최영주
인천대학교, 전력품질기술(주)

A Study on harmonic countermeasure establishment considering the influence of the communication obstacle by harmonic

University of Incheon, PQtech

Abstract- This paper presents harmonic countermeasure establishment considering the influence of the communication obstacle by harmonic. Generally, We are not considered The communication obstacle in the influence countermeasure. But, In this paper, We used IT that is a communication obstacle exponent and designed a filter that was satisfied IT exponent. The filter will minimize the influence of the communication obstacle by harmonic. The method considered IT is applied to design a filter in the area with a communication power supply.

1. 서론

현재 통신장비에는 전력변환장치를 필요로 하는 기기들이 대부분을 차지하고 있는데 이러한 전력변환장치들은 인해 발생하고 반복하게 되어 전력품질의 문제들이 대두되고 있을 뿐 아니라 통신장비도 적지 않은 영향을 미치고 있다. 현재 고조파를 저감시키기 위한 다양한 고조파 필터가 있으며 이러한 필터를 적용하게 되면 대부분의 고조파는 저감되며 전력의 품질은 향상된다. 그러나 필터를 설치하고서도 고조파가 완전하게 제거할 수 없는데 이러한 전력장비의 고조파가 통신에 영향을 미치게 된다.

본 연구에서는 이러한 고조파 필터를 설치하였다. 현재부터 전력품질이 고조파의 영향이 빗어날 수 없음을 직접하고 그에 대한 대안을 마련하고자 한다. 특히 고조파 저감을 위한 고조파 필터 설치시 통신장비의 고조파 영향을 평가할 수 있는 IT 지수를 이용하였다. 결국 IT 지수만을 만족할 수 있는 고조파 필터를 설치하고 고조파로 인한 통신장비의 저화하하도록 하였다.

따라서 본 연구에서는 통신에 미치는 고조파를 최소화하는 방안을 고려하면서 배출장비의 고조파를 제거하는 고조파 필터를 설계하는 것을 목적으로 하였다.

2. 고조파의 통신장에 분석 및 IT지수

전력품질 저하하는 것은 전력저장설비가 고조파 전류의 발생원으로 작용하여 이 고조파 전류가 각 계통을 따라 전원까지 영향을 끼치는 현상으로 요약될 수 있다. 즉, 이들 설비의 압연식이 되어 있을 수 있는 고조파 전류가 단순히 계통에 내재하는 수용으로 넘어 계통에 미치는 영향을 미치는 수용으로 증가되게 되는 것이다. 이들 기기에서 발생하는 고조파는 수용가대의 인근 기기의 장애를 유발할 뿐만 아니라, 전력공급설비에도 유출되어 동일계통에 접속된 수용가대도 장애를 유발하게 되기로, 앞으로 설비가 체계화되어 전력저장장치의 사용이 더해져 증가함에 따라 고조파의 영향은 보다 심각해 질 것으로 전망되고 있다. 고조파 전류는 전선로부터 부하만 관계의 일체의 핵심요소에 의하여 전압분해를 임시하고 이 전압장에 따라 비록 전선 전압포화가 순정전압과 맞더라도 부하측의 전압 포화는 왜곡화가 된다. 이러한 전압 왜곡화 파는 각종 전기기를 작동, 정밀 전기기의 동작 불량, 기기 손상 및 파열의 원인이 될 수 있으며, 이상과 같은 부재는 그 자체의 성질상 전원으로부터 왜곡과 전류를 소모하게 되므로 계통 전체에 대해서 고조파 전류원으로 동작하여 계량 내류 순환하는 고조파전류를 출력하고 계 통내의 전압포화를 계그리드에서 다른 기기의 영향을 주게 된다. 또한, 이 고조파전류는 수용가대의 수용변환설비에 유효 전력계에 유출하게 되므로, 전자장 요일기기의 오보값에 따라 발생되는 고조파가 전력계에 접속된 다른 부하나 전수의 전기기 등에 미치는 영향도 고려해야 한다.

 특히 본 연구에서는 지금까지도 심도 있게 논의 되어져 있는 고조파의 통신장에 관해서 IT 지수를 소개하고 이를 지수로 기반으로 하여 고조파 저감책을 수립하도록 할 수 있다.

위에서 언급한 것에 이는 많은 고조파를 발생시키는 전력저장설비 등의 급격한 증가에 합리적 고조파에 관한 문제가 사회적으로 대두되고 있는 현 시점에서 고조파의 규제에 기반을 둔 고조파 규제 규정은 여러 나라에서 각각의 계통환경에 적합한 기준에 맞는 규정을 사용하고 있다. 이런 규정들이 따르면 IEEE, IEC 등 여러 규정이 있으며 본 연구에서는 세계적으로 통용되는 다음 표 1의 IEEE 519-1992 규정을 적용한다.

표 1. IEEE 519-1992 규정

Current Distortion Limits for General Distribution Systems (120[V]부터 69000[V]까지)

<table>
<thead>
<tr>
<th>SCR</th>
<th>Individual Harmonic Order</th>
<th>(Odd Harmonics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{SC} / I_{L}</td>
<td>11</td>
<td>11s<17</td>
</tr>
<tr>
<td><20</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>20-30</td>
<td>7.0</td>
<td>3.5</td>
</tr>
<tr>
<td>50-100</td>
<td>10.0</td>
<td>4.5</td>
</tr>
<tr>
<td>100<1000</td>
<td>12.0</td>
<td>5.5</td>
</tr>
<tr>
<td>>1000</td>
<td>15.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

\[I_{TDD} = \frac{\sum I^2}{I_{L}} \]

\[h : \text{고조파차수} \]
\[I_{L} : \text{차수별 고조파 전류} \]
\[I_{SC} : \text{PCC에서의 최대단락전류} \]
\[I_{L} : \text{PCC에서의 최대부하전류(기본주파수요소)} \]

대부분 상업용으로 사용되는 통신 주파수 범위는 200 ~ 3500kHz로서 고조파의 주파수 범위(120 ~ 3000Hz)와 거의 일치하게 된다. 그러므로 전력계에서 고조파가 많
이 함유될 경우 전자유도에 의하여 통신에 적지 않은 영향을 미치게 된다. 특히 고조파의 범위 중에서 가장 많은 영향을 미치는 고조파 차수는 제2조파에서 제8조파로서 주파수로 환산하면 1360 ~ 3600Hz로서 사람이 가장 잘 들을 수 있는 주파수(2000 ~ 3300Hz)와 거의 일치하기 때문임을 알 수 있다.

(1) IT지수의 기존
IT는 전류 고조파에 의하여 인간의 정각에 장애를 미치는 정도를 나타내며, 통신사에 대한 건설물을 나타내고, 가증치를 포함하여 식(2)과 같이 계산된다.

\[
IT = \sqrt{\sum_{n=1}^{50} W^2_h \times I^2_h} \tag{2}
\]

\(I_h \) : 차수별 전류정류량(34)
\(W_h \) : Telephone Interference Weighting factors

표 2를 IT 계산을 위한 가중치를 나타내고 그림 1은 IT지수의 가중치 그레프를 보여주고 있다.

<table>
<thead>
<tr>
<th>th</th>
<th>Weight</th>
<th>th</th>
<th>Weight</th>
<th>th</th>
<th>Weight</th>
<th>th</th>
<th>Weight</th>
<th>th</th>
<th>Weight</th>
<th>th</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>11</td>
<td>2260</td>
<td>21</td>
<td>6650</td>
<td>31</td>
<td>7360</td>
<td>41</td>
<td>10340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>2760</td>
<td>22</td>
<td>6230</td>
<td>32</td>
<td>8070</td>
<td>42</td>
<td>10480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>3360</td>
<td>23</td>
<td>6730</td>
<td>33</td>
<td>8330</td>
<td>43</td>
<td>10600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>14</td>
<td>3860</td>
<td>24</td>
<td>6650</td>
<td>34</td>
<td>8580</td>
<td>44</td>
<td>10510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>4360</td>
<td>25</td>
<td>6980</td>
<td>35</td>
<td>8830</td>
<td>45</td>
<td>10480</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>16</td>
<td>4660</td>
<td>26</td>
<td>6790</td>
<td>36</td>
<td>9080</td>
<td>46</td>
<td>10530</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td>17</td>
<td>5100</td>
<td>27</td>
<td>6970</td>
<td>37</td>
<td>9330</td>
<td>47</td>
<td>10210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>18</td>
<td>5400</td>
<td>28</td>
<td>7060</td>
<td>38</td>
<td>9580</td>
<td>48</td>
<td>9950</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>19</td>
<td>5650</td>
<td>29</td>
<td>7230</td>
<td>39</td>
<td>9840</td>
<td>49</td>
<td>9850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1790</td>
<td>20</td>
<td>5900</td>
<td>30</td>
<td>7570</td>
<td>40</td>
<td>10090</td>
<td>50</td>
<td>9670</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

그림 1. IT지수의 가중치 그레프

(2)에 의해서 계산되어진 IT 지수는 다음 표 3의 IT 가이드라인에 의해 통신장에 여부를 판단할 수 있다.

<table>
<thead>
<tr>
<th>고피</th>
<th>차수별 전자유도장애가 없는 수준</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
</tr>
<tr>
<td>2</td>
<td>25,000</td>
</tr>
<tr>
<td>3</td>
<td>25,000</td>
</tr>
</tbody>
</table>

3. 사례연구
본 사례연구에서 사용할 자료는 통신용 전력변환장치들로 인하여 다양한 고조파가 발생하는 지역의 100(KVA), 380(V)인 변압기 2개곳을 대상으로 하였다. 이 지역은 고조파로 인하여 통신 절연 및 물품상장 등이 진행되므로 발생하고 있다. 측정된 차수별 전류 고조파 rms는 표 4와 같다.

<table>
<thead>
<tr>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54.4</td>
<td>11</td>
<td>0.157</td>
<td>21</td>
<td>0.015</td>
<td>31</td>
<td>0.27</td>
<td>41</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.748</td>
<td>12</td>
<td>0.049</td>
<td>22</td>
<td>0.416</td>
<td>32</td>
<td>0.028</td>
<td>42</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.622</td>
<td>13</td>
<td>0.849</td>
<td>23</td>
<td>0.0062</td>
<td>33</td>
<td>0.34</td>
<td>43</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.301</td>
<td>14</td>
<td>0.097</td>
<td>24</td>
<td>0.396</td>
<td>34</td>
<td>0.065</td>
<td>44</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8.158</td>
<td>15</td>
<td>0.132</td>
<td>25</td>
<td>0.0025</td>
<td>35</td>
<td>0.903</td>
<td>45</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.173</td>
<td>16</td>
<td>0.09</td>
<td>26</td>
<td>0.243</td>
<td>36</td>
<td>0.111</td>
<td>46</td>
<td>0.062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.366</td>
<td>17</td>
<td>0.476</td>
<td>27</td>
<td>1.289</td>
<td>37</td>
<td>0.159</td>
<td>47</td>
<td>0.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.062</td>
<td>18</td>
<td>0.118</td>
<td>28</td>
<td>0.118</td>
<td>38</td>
<td>0.042</td>
<td>48</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.855</td>
<td>19</td>
<td>0.665</td>
<td>29</td>
<td>0.634</td>
<td>39</td>
<td>0.09</td>
<td>49</td>
<td>0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.173</td>
<td>20</td>
<td>0.09</td>
<td>30</td>
<td>0.125</td>
<td>40</td>
<td>0.063</td>
<td>50</td>
<td>0.035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

이 때 연중 최대전력기는 111(A)이고 단락기범위(ISC)는 3798,357(A)이다. 단락기범위(ISC)는 36.17으로 본 연구에서의 ITDD 규제치는 표 1에서와 같이 IEEE 규정에 의해 8%이하로 하여야 한다. 이 때의 ITDD는 식(1)에 의해 구할 수 있다.

그런데 측정결과 전류 THD는 112(A)이고 연중 최대전력기는 111(A)이므로 식 (1)를 이용하여 ITDD는 1011%가 되어 IEEE 규정치인 8%을 초과하여 규정치를 만족시키지 못하게 된다. 또한 통신장에 차 수는 IIID,7.17로 표 3에서의 IEEE 규정치인 10000 미만을 만족시키지 못하게 되어 통신장에 장애를 초래할 뿐만 아니라 다른 전력품질을 저하시킨다.

따라서 고조파를 제거하기 위하여 고조파 필터 설계는 필수적이다. 본 연구에서는 고조파 필터에 영향을 줄 수 있는 고조파를 제거하도록 하였다.

10.11%의 ITDD를 IEEE 규정치인 8% 이내로 저감시키기 위하여 21.5(KVA)인 영상용 고조파 필터를 설치하였고 그에 따른 차수별 전류 고조파 rms는 표 5와 같다.

<table>
<thead>
<tr>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54.4</td>
<td>11</td>
<td>0.141</td>
<td>21</td>
<td>0.003</td>
<td>31</td>
<td>0.243</td>
<td>41</td>
<td>0.194</td>
</tr>
<tr>
<td>2</td>
<td>0.673</td>
<td>12</td>
<td>0.009</td>
<td>22</td>
<td>0.374</td>
<td>32</td>
<td>0.025</td>
<td>42</td>
<td>0.001</td>
</tr>
<tr>
<td>3</td>
<td>1.066</td>
<td>13</td>
<td>0.764</td>
<td>23</td>
<td>0.006</td>
<td>33</td>
<td>0.062</td>
<td>43</td>
<td>0.035</td>
</tr>
<tr>
<td>4</td>
<td>0.181</td>
<td>14</td>
<td>0.089</td>
<td>24</td>
<td>0.072</td>
<td>34</td>
<td>0.050</td>
<td>44</td>
<td>0.038</td>
</tr>
<tr>
<td>5</td>
<td>7.342</td>
<td>15</td>
<td>0.024</td>
<td>25</td>
<td>0.0025</td>
<td>35</td>
<td>0.813</td>
<td>45</td>
<td>0.008</td>
</tr>
<tr>
<td>6</td>
<td>0.032</td>
<td>16</td>
<td>0.081</td>
<td>26</td>
<td>0.219</td>
<td>36</td>
<td>0.232</td>
<td>46</td>
<td>0.056</td>
</tr>
<tr>
<td>7</td>
<td>3.929</td>
<td>17</td>
<td>0.426</td>
<td>27</td>
<td>0.226</td>
<td>37</td>
<td>0.143</td>
<td>47</td>
<td>0.125</td>
</tr>
<tr>
<td>8</td>
<td>0.066</td>
<td>18</td>
<td>0.228</td>
<td>28</td>
<td>0.162</td>
<td>38</td>
<td>0.038</td>
<td>48</td>
<td>0.006</td>
</tr>
<tr>
<td>9</td>
<td>0.151</td>
<td>19</td>
<td>0.599</td>
<td>29</td>
<td>0.579</td>
<td>39</td>
<td>0.016</td>
<td>49</td>
<td>0.019</td>
</tr>
<tr>
<td>10</td>
<td>0.156</td>
<td>20</td>
<td>0.061</td>
<td>30</td>
<td>0.023</td>
<td>40</td>
<td>0.075</td>
<td>50</td>
<td>0.032</td>
</tr>
</tbody>
</table>

표 5의 의한 전류 THD는 8.58(A)이 연중최대전력기는 111(A)이므로 ITDD는 7.73(A)로 IEEE 규정치인 8%이내로 저감사였고 이로 인해 전력품질은 향상됨을 알 수 있다. 그러나 이 때의 고조파로 인한 통신장에 차수인 IT는 식 (2)에 표 2을 통하여 11273.2로 계산 되므로 표 3의 IT 규정치인 10000 미만을 만족시키
지 못하고 있다.

그리므로 다음으로 고조파를 최소화 시키며 고조파로 인한 통신장에 지수인 IT 지수까지 만족시킬 수 있는 용량 131.6kVA 이상의 고조파 필터를 설계하였다.

이와 같이 IT 지수를 고려한 필터 설계 결과 차수별 전류 고조파 rms는 표 6과 같다. 그 결과로 전류 TDTH rms는 7.565(A)이고 이때 최대부하전류는 111(A) 이므로 ITDTH는 6.815(%)로서 IEEE 규격치인 8(%)이내를 만족한다. 또한 이론적 식(2)과 표 2에 의하여 이때의 IT는 9891.1로 계산되므로 표 3의 IT 규격치인 10000 미만으로 만족하게 된다.

표 6. IT지수를 고려한 필터설계 결과 차수별 전류 고조파 rms

<table>
<thead>
<tr>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
<th>th</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58.43</td>
<td>11</td>
<td>0.126</td>
<td>21</td>
<td>0.000</td>
<td>31</td>
<td>0.216</td>
</tr>
<tr>
<td>2</td>
<td>0.098</td>
<td>12</td>
<td>0.001</td>
<td>22</td>
<td>0.333</td>
<td>32</td>
<td>0.022</td>
</tr>
<tr>
<td>3</td>
<td>0.168</td>
<td>13</td>
<td>0.675</td>
<td>23</td>
<td>0.004</td>
<td>33</td>
<td>0.010</td>
</tr>
<tr>
<td>4</td>
<td>0.164</td>
<td>14</td>
<td>0.078</td>
<td>24</td>
<td>0.011</td>
<td>34</td>
<td>0.044</td>
</tr>
<tr>
<td>5</td>
<td>6.538</td>
<td>15</td>
<td>0.004</td>
<td>25</td>
<td>0.002</td>
<td>35</td>
<td>0.722</td>
</tr>
<tr>
<td>6</td>
<td>0.005</td>
<td>16</td>
<td>0.072</td>
<td>26</td>
<td>0.194</td>
<td>36</td>
<td>0.003</td>
</tr>
<tr>
<td>7</td>
<td>3.493</td>
<td>17</td>
<td>0.361</td>
<td>27</td>
<td>0.037</td>
<td>37</td>
<td>0.127</td>
</tr>
<tr>
<td>8</td>
<td>0.000</td>
<td>18</td>
<td>0.000</td>
<td>28</td>
<td>0.144</td>
<td>38</td>
<td>0.004</td>
</tr>
<tr>
<td>9</td>
<td>0.004</td>
<td>20</td>
<td>0.072</td>
<td>29</td>
<td>0.144</td>
<td>39</td>
<td>0.003</td>
</tr>
<tr>
<td>10</td>
<td>0.136</td>
<td>22</td>
<td>0.007</td>
<td>30</td>
<td>0.004</td>
<td>40</td>
<td>0.006</td>
</tr>
</tbody>
</table>

필터 설계에 각각의 경우 전류 THD rms 및 ITDTH의 값을 비교하여 보면 그림 2와 같다. IEEE의 ITDTH의 규격치는 8(%)이다.

그림 2. 전류 THD rms 및 ITDTH 비교

그림 2와 그림 3을 보면 개선 전에 IEEE 고조파 규격치인 8(%)을 만족시키지 못하며 통신 장애 지수인 IT지수 규격치인 10000 미만을 만족시키지 못하고 있다. 그리하여 단지 고조파가 규정치 ITDTH 8(%)를 만족시키는 것을 목적으로 하여 고조파와 짧막 필터를 설계하게 되면 IEEE 고조파 규격치인 7.73(%)이지 고조파를 짧막 시킬 수 있지만 통신 장애 지수의 IT지수 규격치인 10000미만을 유지하고 있어 통신장애를 유발할 수 있게 된다.

그러하여 본 연구에서는 다시 고조파 규격치 만족는 물론 통신장에 지수인 IT지수 규격치까지 만족할 수 있도록 다시 고조파와 짧막 필터를 설계하였다. 결과 그림 2와 그림 3에서 보는 바와 같이 필터설계(IT 볼로그리프에서는 IEEE 고조파 규격치 ITDTH 8(%)는 만족시키고 IT 지수는 만족시키지 못하는 반면 필터설계(IT 고려에서는 IEEE 고조파 규격치는 물론 IT 지수까지 만족시키므로 성공적으로 ITDTH 8(%)를 만족시키는 것으로 분석하였다.

4. 결론

본 연구에서는 고조파의 영향이 널리 증가되고 있는 시점에서 전기설비들과 밀접한 관련을 가지고 있는 통신설비에 미치는 고조파의 영향을 저감시킬 수 있는 방안을 모색하기 도록되었다. 일반적으로 IEEE의 규격치인 ITDTH만을 고려하여 설계하는 방식에서는 고조파가 통신장에 미치는 영향을 고려하지 않았다. 반면 본 연구에서는 고조파로 인한 통신장에 영향을 가할 수 있는 통신장에 지수인 IT지수를 고려하여 필터를 설계하는 방법을 수행하였다. 그러하여 고조파 저감은 물론 고조파로 인한 통신장에 저감할 수 있도록 하였다. 이 후 본 연구에서 필터 설계 시 제한된 영상의 통신장에 저감에 IT지수를 고려하여 필터 설계를 통하고 고조파 저감 및 통신장에 저감에 보다 합리적이고 경제적인 방안을 모색할 필요가 있을 것으로 사료된다.

감사의 글

"본 연구는 한국과학재단 지정 인천대학교 동북아인증센터 연구센터의 지원 및 영문화진공법공학의 연구지원에 의한 것임"

[참고 문헌]