Experimental Study On Power Flow Analysis of Vibration of Simple Structures

Key Words: Power Flow Analysis, Loss Factor, Modal Density, Experimental Analysis, Medium-to-high Frequency, Vibration of Plates

ABSTRACT

The power flow analysis (PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiment has been performed to observe the analytical characteristics of the power flow analysis of the vibration of a plate. In the experiment, the loss factor of the plate and the input mobility at source point have been measured. The data for the loss factor has been used as the input data to predict the vibration of the plate with PFA. The frequency response functions have been measured over the surface of the plate. The comparison between the experimental results and the predicted results for the frequency response functions showed that PFA can be an effective tool to predict structural vibration in medium-to-high frequency ranges.

1. 서론

유한요소법과 통계적 에너지해석법의 한계점들을 보완하기 위한 여러 근사법들은 중에서 최근에 국외에서 연구가 활발히 진행되고 있는 파워플로우해석법(Power Flow Analysis, PFA)을 들 수 있다. 이 방법은 Belov등[3]에 의하여 제안되었으며, 진동에너지를 효율 형태에 따른 고유의 에너지해석 방정식을 정립하고 해석함으로써 진동에너지의 공간적인 분포와 경달 경로 등을 제시할 수 있는 방법이다. 이러한 파워플로우해석법은 주로 고주파수 대역에서 적용되어지나, 중주파수 영역에까지 확대 적용될 수 있는 방법으로 인식되어 왔다 [4,5].

그러나 파워플로우해석법의 수치 해에 대한 신뢰성은 해석이 가능한 구조물의 해석 해의 비교를 통하여 평가되어 왔다. 따라서 본 논문에서는 실험에 의한 결과와 파워플로우해석해작의 비교를 통하여, 파워플로우해석법의 신뢰성을 검증하고 해석성을 임의적으로 검토하고자 한다. 실험에서는 자유 진동에 진동하는 평판의 손실계수를 측정하여, 파워플로우해석법의 입력 데이터로 활용하였다. 그리고 평판의 여러 지점에
대한 주파수 응답 함수 (FRF, Frequency Response Function)를 추정하고 파워호름해석 해와 비교를 하였다. 이러한 비교를 통하여, 파워호름해석법이 중고주파수 대역의 구조 진동을 해석하기 위하여 효과적으로 활용될 수 있음을 보였다.

2. 파워호름해석 (PFA)

구조 진동의 경우 여러 특성을 갖는 면의 및 면내 파동의 전파에 의하여 발생한다. 파워호름해석법의 경우, 각 파동과 관련된 전동에너지 히트 형태에 따른 고유의 에너지가 배방정식을 정립하고 해석함으로써 전동에너지는 공간적인 분포와 진단 경로 등을 재현할 수 있는 방법이다. 일반적으로 진동에너지 방정식은 전동수 \(\omega \)에서 공간-시간 평균 전동 에너지 밀도 \(\langle e \rangle \)에 대하여 다음과 같이 표시한다.

\[
-\frac{c^2}{\eta \omega} \nabla^2 \langle e \rangle + \eta \omega \langle e \rangle = \langle \Pi \omega \rangle
\]

여기서 \(\eta \)는 구조강도에 의한 내부에너지 손실계수, \(c^2 \)는 해당 파동의 에너지 전파 속도, 그리고 \(\Pi \omega \)는 가정력에 의한 입력 파워를 나타낸다. 또한 진동 안테나 향의 펄 \(\langle q \rangle \)는 다음과 같이 진동에너지밀도로 표시한다.

\[
\langle q \rangle = -\frac{c^2}{\eta \omega} \nabla \langle e \rangle
\]

식(1)과(2)에 해당 구조물의 경계에서의 경계조건을 적용함으로써 전동에너지 밀도와 전동안테나 향의 밀도를 구할 수 있게 된다. 자유자유진 단단 평면의 경우 경계 지점으로부터 입력 파워가 없다는 경계조건을 고려하게 된다. 적용 방법으로서는 해석적 방법을 이용할 수 있으며, 또한 식(1)과(2)의 해를 구하기 위하여 유한요소법을 이용하는 파워호름해석법(PFFEM, Power Flow Finite Element Method)을 적용할 수 있다. 본 논문에서는 전동 에너지밀도를 series 형태로 나타내어 해를 구하는 해석적 방법을 적용하기로 하며, 자세한 적용 방법은 참고문헌 [8]을 참고할 수 있다.

파워호름해석법 적용시 입력 파워의 시간 평균값은 가진 지점의 임피던스 \(Z_m \)을 이용하여 다음과 같이 고려할 수 있다.

\[
\Pi_m = \frac{1}{2} |F|^2 \text{Re} \left(\frac{1}{Z_m} \right)
\]

그리고 중고주파수 영역을 고려하는 경우, 무한 평판에 대한 임피던스 값을 다음과 같이 고려할 수 있다.

\[
Z = 8\sqrt{Boh}
\]

여기서 \(B = h^2/[12(1-\nu^2)] \), \(h, \rho, \nu \)는 평판의 두께와 밀도 및 Poisson비를 나타낸다.

3. 실험 해석

실험 모델은 그림 1과 같이 자유 자유진 평판으로 면변진동을 고려한다. 평판의 모드 특성을 모르더라도 \(n \) 을 측정함으로써 알 수 있으며, 이를 위하여 다음과 같은 관계를 이용할 수 있다[9].

\[
n(f_n) = \frac{1}{f_2-f_1} \int_{f_1}^{f_2} 4mA \text{Re}(Y) \, df
\]

여기서 \(m, A, Y \)는 단위 면적당 질량, 면적 및 입력지점의 모델러티를 각각 나타낸다. 그리고 \(f_n \)은 주파수 대역 \(f_1 \leq f \leq f_2 \)의 중심주파수를 나타낸다. 그러므로 입력지점의 모델러티를 측정함으로써 모델밀도를 구할 수 있다. 그러므로 해당 주파수 대역에 대한 모드 수는 다음과 같이 구하려한다.

\[
N(f_n) = \int_{f_1}^{f_2} n(f) \, df
\]

그림 1. 자유자유진 평판의 진동 측정 실험 해설

평판의 손실계수를 측정하기 위하여 다음과 같이 파워주입법 (power injection method)을 이용할 수 있다[9].

\[
\eta(f_n) = \frac{1}{f_2-f_1} \int_{f_1}^{f_2} \left(\Pi_m \right) \, df
\]
여기서 $\langle \Pi \rangle_\Gamma$와 $\langle a^2 \rangle_\Gamma$는 입력파와 가속도의 시간에 대한 총합평균 및 공간 평균값을 나타낸다. 그러므로 이들 값을 측정함으로써 손실계수를 구할 수 있다. 파워호르크식법에서는 실험에 의한 손실계수 값을 식(1)의 입력 데이터로써 이용하게 된다.

본 논문의 모드밀도와 모드 수를 구하기 위한 실험에서 가장 조건으로 충격해머를 이용하였다. 각 모드를 설정하여 각각 지점에 대한 모오파티를 구한 후, 식(5), (6)에 의하여 모드밀도와 모드 수를 구한 후 평균값을 취하였다.

손실계수를 구하기 위한 실험으로서는 가장 지점을 3 지점을 설정하고 각각지점에 대하여 입력 파워를 측정하였 다. 또한 각 가지지점을 가진 하면서 34 지점에서 가속도를 측정하였다. 각 가진 지점을 고려하여 식(7)에 의하여 손실계 수를 구하였으며, 3 손실계수 값에 대한 평균값을 취하였다. 이 경우에도 가장 조건으로 충격해머를 이용하였고, 가역성 의 원리를 이용하여 가장 지점에 가속도계를 부착시키고, 충격해머를 이용하여 34 지점을 차례로 가진시키면서 주파수 응답값을 측정하였다. 그러므로 단위 가전력에 대한 입력 파워 및 가속도 값으로 고려한 경우에 해당한다.

4. 결론 및 고찰

그림 2는 1/3 오타바주파수 대역에 대한 모드 수를 보여 준다. 실험 결과가 이론 예측 결과에 비교적 잘 일치하는 결과를 나타내주고 있다. 그리고 중심주파수 300 Hz을 갖는 대역에 이르러야 모두 수 5-6개 정도의 모드 수를 갖게 됨을 알 수 있다.

그림 3은 평판의 주파수에 따른 손실계수 측정값을 보여 준다. 손실계수의 일반적인 경향은 1 kHz 이 후 주파수 증가에 따라 감소하다가 4kHz에서 증가하고 있음을 알 수 있다. 그러나 본 실험에서는 최대 주파수 5kHz까지 고려하였으므로, 보다 정확한 경향에 대한 분석은 좀 더 높은 주파수 범위까지의 실험 데이터를 필요로 한다.

그림 4의 3 가진 지점을 각각 가진하는 경우 측정 지점
본 논문에서는 실험에 의한 결과와 파워호름혜석해의 비교를 통하여, 파워호름혜석법의 신뢰성을 검증하고자 하였다. 실험에서는 자유 지지되어 진동하는 평판의 손.slides의 측정하여, 파워호름해석의 허용 데이트를 활용하였다. 그리고 평판의 여러 지점에 대한 주파수 응답함수(FRA, Frequency Response Function)를 측정하고 파워호름해석해와 비교하였다. 이러한 비교를 통하여, 파워호름해석법이 중고주파수 대역의 구조 진동을 해석하기 위하여 효과적으므로 활용될 수 있음을 보였다.

참고 문헌

