부가철량을 이용한 선박용 횡동요 저감장치에 대한 실험적 연구

An Experimental Study on Mass Driving Anti-Rolling System for Ships

문석준**·김병인**·이성휘**·함상용**·정중안*·이경중***
Seok-Jun Moon, Byung-In Kim, Sung-Hwi Lee, Sang-Yong Ham, Jong-Ahn Jeong and Kyung-Joong Lee

Key Words: Ship(선박), Anti-rolling system (횡동요 저감장치), Sea-trial test (해상 실선시험)

ABSTRACT

Reduction of a ship’s rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MD-ARS) might be one candidate of several systems against the ship’s rolling. In this paper, three types of MD-ARS, two passive and one active devices, are developed for small ships. After they are installed on the cabin of the small leisure boat, respectively, a series of test is conducted before and after operating them. Through the test, it is confirmed that the roll responses of the ship are pretty well reduced by the system.

1. 서론

선박의 대형화, 고속화 및 고급화 추세와 함께 선박의 운동을 줄이기 위하여 자세제어방법에 대한 연구가 다양하게 수행되고 있다[1]. 대표적인 자세제어장치로서는 anti-rolling tank(ART), fin stabilizer, hydrofoil control system 등이 있다. 현재 대형여객선, 고급전용, 해군 함정, 해경 함정, 해양조사선 등에는 fin stabilizer가 필수적으로 장착되고 있으며, ART는 특수 목적선에 부분적으로 설치되고 있다[2].

레저 보트, 낚시선 등 소형 선박의 경우 정선 중 횡동요에 의한 운동이 탑승객에게 큰 영향을 주는 것으로 알려져 있다. 이를 방지하기 위해 장비로서는 ART외에 부가 가동장치를 이용하는 mass driving anti-rolling system (MD-ARS) 등이 있다. 유체를 사용하는 ART에 비해 MD-ARS는 비중이 큰 고체의 질량을 사용하므로 설치 공간의 제약이 적으면서도 효과는 더 좋은 것으로 알려져 있다.

MD-ARS에 대한 과외에서의 연구는 일본 조선소를 중심으로 체계적으로 수행되고 있다[3,4]. 국내 연구에서는 부경대학교에서 모형선을 대상으로 능동형 장치를 수조에서 실현한 내용이 발표되었다[5]. 또한 한국기계연구원에서는 능동형 MD-ARS의 개발을 위한 선형연구로서 anti-winup 현상을 고려한 제어적 연구가 진행되고 있다[6].

본 연구에서는 소형 레저 선박에 적용할 수 있는 수동형 및 능동형 MD-ARS를 설계·제작하고, 2톤급 소형 선박에 탑재하여 해상시험을 통해 성능을 비교·검증하였다. 수동형 MD-ARS는 진자식과 절량-스프링 방식을, 능동형으로는 모터 구동 방식 장치를 개발하였다.

2. 수동형 횡동요 저감장치

본 연구에서는 수동형 MD-ARS로서 진자식과 절량-스프링 방식을 고려하였으며, 진자식 MD-ARS에 대한 개발 및 성능 검증결과는 지난 학술대회에서 발표하였다[7].

진자식 MD-ARS의 경우 대상선박의 횡동요 주기는 MD-ARS의 주기를 일치시키기 위해 일정한 크기의 구름을 반정이 필요하게 된다. 필요한 구름 반정에 의해 진자식 MD-ARS의 높이가 결정되게 된다. 선박
의 릴 및 디자인은 상품성 측면에서 매우 중요하며, 따라서 MD-ARS의 높이는 가능하면 낮게 하는 것이 요망된다. 하지만 전차식 MD-ARS는 일정한 높이의 한계가 존재하게 된다. 이러한 단점을 극복하기 위해 절량-스프링 방식의 MD-ARS를 설계·제작하였다. MD-ARS의 고유주파수를 전반의 횡동도 주기가 아니라 시키기 위해 절량 및 스프링의 강성을 조합하였다. 먼저 가동절량을 전차식과 같은 30kg으로 고정시키고 스프림의 강성 및 수량을 결정하였다. Fig.1은 대상 설계에 탑재된 평균을 보여주고 있다.

절량-스프링 방식 MD-ARS의 성능시험은 전차식 MD-ARS와 동일한 방법으로 수행되었다. 단순 시장가 경기도 화성시 진일향 및 인근 해역에 보장되었다. 계류장 근처에서 1차 실험을 2004년 6월에 수행하였다. 이곳에서는 파도의 영향이 크지 않으므로 인력에 의해 횡동을 유발시켰다. 좌·우양에서 강래로 10초 동안 횡동을 유발시킨 후 중지함으로서 자유 횡동을 발생하도록 하였으며, 저감장치 작동 전 및 후에 대해 각각 5회의 시험을 수행하였다. 효과를 정량적으로 평가하기 위해 강재동 10초 동안과 마지막 자유동 10초 동안의 자료를 분석하여 분석하였다. 각각의 RMS 값을 산출하여 Table 1에 정리하였다. 5회의 시험 자료를 살펴보면 저감장치 작동 전 횡동 Apple 회속도 (RMS)가 22~24deg/sec에서 3~6deg/sec으로 감소하였다. 한편 작동 후에는 20~23deg/sec에서 0.5~3deg/sec으로 감소하였다. 저감 장치 작동 전·후의 차이 10초와 최종 10초 사이의 감소비율의 평균치는 20.4%에서 7.8%로 감소되었음을 알 수 있다. 즉 저감장치로 인하여 약 60%정도의 횡동이 감소되었음을 확인할 수 있다.

2차 시험은 제도부와 대대로 발라서 해상에서 수행하였다. 파동량 측정은 비교한 상태에서 저감장치 작동 전 및 후의 횡동 약속도를 각각 약 8분 동안 3회씩 계속하였다. 저감장치의 효과를 평가하기 위해 시간영역 및 주파수영역에서 분석을 시도하였으며, 결과를 Table 2에 정리하였다. Table 2를 살펴보면 시간영역에서의 횡동 약속도 레이블의 최대 값이 8~10deg/sec가 5~9deg/sec로, 최소값이 7~10deg/sec가 4~9deg/sec로 감소되었음을 알 수 있다. 또한 RMS 레이블도

Table 1 Roll Rates in the Near Wharf
(단위: degree/sec)

<table>
<thead>
<tr>
<th>Cond. No.</th>
<th>RMS(A)</th>
<th>RMS(B)</th>
<th>Ratio(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>22.22</td>
<td>5.48</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>23.26</td>
<td>3.86</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>22.28</td>
<td>3.73</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>23.48</td>
<td>5.19</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>23.61</td>
<td>4.88</td>
<td>21</td>
</tr>
<tr>
<td>Ave</td>
<td>20.4(C)</td>
<td>1.87</td>
<td>9</td>
</tr>
<tr>
<td>ON</td>
<td>20.49</td>
<td>1.30</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>20.71</td>
<td>0.47</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>22.26</td>
<td>2.39</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>20.63</td>
<td>2.33</td>
<td>11</td>
</tr>
<tr>
<td>Ave</td>
<td>7.8(D)</td>
<td>3.82</td>
<td>38.2</td>
</tr>
</tbody>
</table>

Table 2 Roll Rates of the Ship in the Far Wharf
(단위: degree/sec)

<table>
<thead>
<tr>
<th>Cond. No.</th>
<th>Max.</th>
<th>Min.</th>
<th>RMS</th>
<th>Power Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>9.55</td>
<td>-9.55</td>
<td>1.85</td>
<td>25.8dB @ 0.47Hz</td>
</tr>
<tr>
<td>2</td>
<td>6.87</td>
<td>-7.40</td>
<td>1.81</td>
<td>25.7dB @ 0.47Hz</td>
</tr>
<tr>
<td>3</td>
<td>8.57</td>
<td>-8.60</td>
<td>2.34</td>
<td>29.8dB @ 0.47Hz</td>
</tr>
<tr>
<td>Ave.(A)</td>
<td>8.33</td>
<td>-8.52</td>
<td>2.00</td>
<td>27.1dB</td>
</tr>
<tr>
<td>ON</td>
<td>5.56</td>
<td>-6.83</td>
<td>1.58</td>
<td>24.4dB @ 0.47Hz</td>
</tr>
<tr>
<td>2</td>
<td>8.38</td>
<td>-8.75</td>
<td>1.84</td>
<td>27.4dB @ 0.47Hz</td>
</tr>
<tr>
<td>3</td>
<td>5.05</td>
<td>-4.60</td>
<td>1.14</td>
<td>21.8dB @ 0.47Hz</td>
</tr>
<tr>
<td>Ave.(B)</td>
<td>6.33</td>
<td>-6.73</td>
<td>1.52</td>
<td>24.5dB</td>
</tr>
<tr>
<td>B/A(%)</td>
<td>76</td>
<td>79</td>
<td>76</td>
<td>2.6Db</td>
</tr>
</tbody>
</table>

1.5~2.5deg/sec에서 1.0~2.0deg/sec로 저감되었음을 알 수 있다. 따라서 시간영역에서의 분석결과 약 20~25% 정도의 횡동과 저감효과를 확인하였다. 주파수 영역에서 분석결과, 주 동요주파수는 0.47Hz로 변화가 없으며, 주 주파수에서의 power density가 평균 27.1dB에서 24.5dB로 약 2.6dB 저감되었다. 따라서 절량-스프링 방식 MD-ARS의 설치로 인하여 약 20%이상의 저감효과를 얻을 수 있었다. 이 결과는 전차 MD-ARS와 비교하여 어떤 사항은 살펴보면, 두 장치 모두 30kg의 가동절량을 사용하였으며, 허용 거리(Stroke)로 동일하다. 또한 내향에서의 저감효과는 50~60%에서 거의 일정하고, 외향에서의 저감효과도 20~30%에서 거의 동일함을 알 수 있다. 수동형 MD-ARS인 경우 가동절량, 이동 허용거리 및 동조 주파수에 따라 저감효과 정도가 결정되므로 두 저감장치의 동일한 효과는 예상할 수 있는 것이다. 다만 절량-스프링 방식의 MD-ARS가 낮은 높이 요구하므로 전자식보
3. 능동형 횡동요 저감장치

능동형 MD-ARS의 구동방식으로는 DC 모터, AC 모터, 유압식 액추에이터 등을 사용할 수 있다. 레저용 소형 선박의 경우 내부에 AC 전원이 공급되지 않으므로 DC 모터를 이용하는 것이 필리하다. 중·대형 선박의 경우 AC 전원이 공급된 AC 모터 또는 유압식 액추에이터의 사용이 가능하다. 유지·보수 및 설치 위치 등의 관점에서 검토한 결과 AC 모터가 적합한 것으로 판단되었다. 따라서 본 연구에서도 AC 시보모터를 활용하여 능동형 MD-ARS를 설계·제작하였다. 모터의 회전선분을 무게 가장질량의 직선운동으로 변환시키기 위하여 적절한 변환기구를 사용해야 한다. 이러한 변환기구로서는 timing belt, ball screw, rack-pinion 등이 있으며, 본 연구에서는 중·소형 MD-ARS에 적합한 ball screw를 사용하였다. 기존의 관련 연구결과를 통해 같은 질량에서는 능동형이 수동형보다 약 2배 이상의 성능을 얻을 수 있다는 경험을 얻었기 때문에 가장질량의 무게는 수동형 MD-ARS의 가장질량 무게의 1/2로 하였다. 가장질량의 제어를 위해 PID 제어기를 제작하여 적용하였다. 제어기에는 수치설정 및 소형 mock-up을 이용하여 임의의 영역을 산출한 후 현장에서 tuning을 통해서 조절하였다. 레버입 제어를 위해 횡동요 제동기만을 사용하였으며, 가장질량의 위치를 확인하기 위해 encoder가 설치된 모터를 선택하였다.

능동형 MD-ARS의 성능시험은 수동형 MD-ARS와 동일한 방법으로 수행되었다. 시험장소는 길경 스프링 방식 MD-ARS의 성능시험 수행된 경기 도 화상시 전국향 및 인근 해안이며, 2004년 7월 8일 ~ 10일에 수행되었다. 장기간간이어서 시험조건이 수동형 MD-ARS의 상이하며, 비행기의 영향이 많은 조건이었다. Fig. 2는 소형 선박에 탑재된 능동형 MD-ARS의 모습을 보여주고 있으며, 외부 망가가 없는 경우 및 있는 경우의 사진을 수록하였다. AC 시보모터 및 Notebook PC의 구성을 위해 발견기를 대상 선박 내부에 설치하여 AC 전원을 공급하였으며, 기타 필요한 DC 전원은 총전지를 사용하였다. 전극형 계획기 근처에서 1차 시험을 수행하였다. 장기의 성능을 검증하기 위해 인력에 의해 횡동요를 강제로 유발시켰다. 좌·우편에서 강제로 10초 동안 횡동요를 유발시킨 후 중지함으로서 자유 횡동요가 발생하도록 하였다. 총 30초 동안 계속하였으며, 저감장치 작동 전, 후에 대해 각각 5회의 시험을 수행하였다. Fig. 3은 대표적인 시험결과를 보여주고 있다. 저감장치의 가동 전·후의 횡동요 레벨을 보여주고 있으며, 횡동요가 급격하게 저감되었음을 정성적으로 확인할 수 있다. 효과를 정량적으로 평가하기 위해 강제동 10초 동안과 마지막 자유동 10초 동안의 자료를 분석하여 다음의 횡동요 RMS 값을 산출하여 Table 3에 정리하였다. Table 3을 통해 저감장치 작동 전·후의 결과를 자세히 비교해 보면, 저감장치가 잘 작동하고 있음을 확인할 수 있다. 저감장치 작동 전 횡동요 (RMS)가 5.56 ± 5.65deg.에서 1.2 ± 2.5deg.으로 감소하였다. 한편 작동 후에는 4.5 ± 5.65deg.에서 0.3 ± 0.6deg.으로 감소하였다. 저감 장치 작동 전·후의 저감 10초 후 최종 10초 사이의 감소비율의 평균치는 32%에서 9%로 감소있음을 알 수 있다. 즉 저감장치로 인하여 약 73%정도의 횡동요가 감소되었음을 증명할 수 있다. 또한 횡동요 속도의 경우에도 유사한 결과를 보여주고 있음을 확인하였다. 따라서 내항에서의 자유동상을 통해 능동형 MD-ARS가 횡동요를 약 70%이상 저감할 수 있음을 확인할 수 있었다.

2차 항항에서의 시험은 제비도와 대도를 앞바다 해상에서 수행하였다. 파랑중 선박의 기관을 정지 시킨 상태에서 저감장치 작동 전·후의 횡동요 각속도 각각 8분 동안 2회에 교차하였다. 대표적인 시험결과를 Fig. 4에 수록하였으며, Fig. 4(a)는 저감장치가 설치한 후 작동을 하지 않았을 경우를, Fig. 4(b)는 저감장치를 작동시킨 경우의 결과를 보여 주고 있다. 횡동요 및 횡동요 속도가 줄어들었음을 정량적으로 확인할 수 있다. 시험결과의 정량적인 수치를 RMS 레벨로 Table 4에 정리하였다. Table 4를 살펴보면 시간영역에서의 횡동요 각속도 레벨의 약 18%가 감소한 반면 횡동요 레벨은 약 50%정도 감소있음을 알 수 있다. 내항에서의 시험결과와 달리 이런 차이를 보이고 있는 해상의 불규칙한 파도에 기인한 것으로 판단된다. 실험 당일 발생한 측정시스템의 문제로 인하여 충분한 횡동요의 자료를 취득하지 못한 것이 매우 아쉬움이다. 이러한 결과를 앞서 기술한 수동형 MD-ARS와 비교하여 능동형 MD-ARS의 성능이 매우 우수함을 알 수 있다. 가장질량의 무게는 수동형의 약 70%이면서 저감장치는 약 1.5배 이상의 감소를 보여주었다.
4. 고찰 및 결론

본 연구에서는 소형 선박의 횡동요 저감을 위해 부가 가동장량을 이용한 수동형 및 농동형 횡동요 저감장치를 설계・제작하여 해상 실시시험을 수행하였다. 수동형에서는 진정격 및 점량・스프링 방식의 장치가, 농동형으로서는 모터 구동방식의 장치가 개발되었다. 각각의 장치를 동일한 소형 선박에 탑재한 후 자유동요 시험과 해상 시험을 통해 성능을 검증・평가하였다. 자유동요 시험에서는 약 50~70%의 횡동요 저감효과를 확인할 수 있었으며, 파장중 해상시험에서는 20~50% 정도의 저감효과를 확인하였다. 해상의 파도는 다양한 주파수 성분을 포함하고 있으므로 농동형 장비가 보다 양호한 저감효과를 보이고 있음을 확인할 수 있었으며, 소형 케이트보트, 낚시선박 등에 적용할 수 있을 것으로 판단되었다.

후기

본 연구는 과학기술부 민·군용융 기술개발사업 중 “파랑중 수상선의 자세예장장기 기술개발 - Mass Driving ARS 설계기술 개발” 사업 과제로 수행되었으며 연구비 지원에 감사드립니다.

참고 문헌

(6) 문석준, 2003, “선박의 횡동요 저감장치를 위한 제어의 설계”, 한국소음진동공학회 춘계학술대회, pp.725-731
(7) 문석준, 박찬일, 정충안, 김병민, 윤헌규, 2004, “소형 선박용 진정격 횡동요 저감장치의 설계시험”, 한국소음진동공학회 전회학술대회, pp.438-441