국내의 소음지도 제작과 활용에 대한 연구
Study on the Noise-mapping Procedure in Korea and Application of Nosie map

오진우*・장서일**・이기경***
Jin Woo Oh, Seo Il Chang and Ki Jung Lee

Key Words : noise map(소음지도), Environmental noise(환경소음)

ABSTRACT

Recently, one of the reason of noise problems is urban planning has little concern about noise. For solving noise problems, strategic action is needed during urban planning. The noise map is one of the solution for concerning about noise in urban planning and EC has been studied the noise map for the strategic purpose since 1970s. The noise map is powerful tool for predicting sound level, calculating exposure population and evaluating the efficiency of the noise reduction plan.

In Korea, The noise map is a unfamiliar field. The experience is few for noise-mapping and the noise mapping procedure has not been standardization yet. For activation of noise map, the study about fundamentals problems of collecting data and noise-mapping procedure must be need.

This paper is for studying on the noise-mapping procedure in Korea and application of noise map.

1. 서론

우리나라의 소음 문제는 해가 걸수록 점점 심각해지고 있다. 이는 도시의 계획 및 성장과정에서 소음에 대한 고려가 전무하였기 때문일 것이다. 현재 소음에 대한 대책은 후처리식의 소극적 대처가 대부분이며 방음벽이 거의 유일한 대안으로 사용되고 있는 실정이다. 국내 사정은 이러한 반면에 현재 유럽에서는 정책결정과정에서 소음영향까지 고려하려는 연구가 활발하다. 이를 위해서 사용하는 도구가 소음지도이다. 하지만 국내에서 소음지도라는 것은 아직 소소한 일 뿐더러 이에 대한 연구가 몇몇 이루어지고는 하였으나 표준이나 기준조차 확립되어있지 않은 상황이다. 이에 본 논문은 국내 현 상황에서 소음지도를 제작하여 보고 제작과정에서 발생할 수 있는 문제점이나 부족한 부분을 검토하며 소음지도의 활용에 대하여 연구하였다.

2. 이론적 배경

2.1 소음지도

소음지도란 힌은 이론적으로 증명된 예측식이나 실험의 결과로 얻은 경험식 및 지리정보시스템(GIS, Geographic Information System)을 사용하여 소음의 수치와 포도를 계산하여 계절적인 변화나 시간적인 변화에 관한 데이터를 분석하여 제시하여 주는 지도이다. 소음지도는 소음도의 단순 제시는 물론이고 소음노출인구나 소음저감 대책에 따른 경제성까지도 판단할 수 있다. 이러한 소음지도의 효용성에 의하여 최근 소음지도에 관한 관심이 증대되고 있는 상황이며 유럽의 EC(European Community)가입국들은 인구수가 25만을 넘는 도시의 소음지도를 2007년까지 의무적으로 제작하도록 하고 있다.

2.2 소음지도의 제작과정

소음지도의 제작은 다음과 같은 과정을 거치게 된다.

- 대상지역의 선정
- GIS DATA 수집
- 현장조사
- 대상지역의 모델제작
- 소음지도 프로그램을 이용한 결과 계산
- 결과 출력 및 검토

![Figure 1. The procedure of noise mapping](image-url)
3. 연구 방법

3.1 대상지역의 선정
본 논문의 대상지역은 도로의 철도가 혼란하는 서울시 내의 한 개구를 대상으로 한다. 대상지역은 도로길이가 약 55km, 시도길이가 약 4km인 지역으로서 외곽으로 교통량이 많은 동부간선도로과 북부간선도로가 위치하고 있고 중앙으로 중앙선이 관통하고 있어 종합적인 소음에 대한 영향의 파장이 가능하고 대상지역의 중심과 구 경계지역에 해발 500m이상의 산이 있어 지형에 따른 소음영향의 변화가 약간이다.

3.2 자료의 수집
소음지도 제작 위해서는 기본적으로 지형과 장애물, 건물 등에 대한 자료가 요구된다. 이러한 자료 수집하는 방법으로 교통단지나 자료자료를 이용하는 것을 원칙으로 하며 이에 부속하거나 보강할 부분이 있는 경우에 한하여 현장조사를 실시하도록 한다.

3.3 소음원의 계산
소음원의 계산을 위해 상용프로그램 SoundPlan을 사용한다. SoundPlan의 경우 음원의 예측에 여러 가지 예측식을 적용할 수 있도록 구성되어 있으며 본 논문에서는 입의적으로 독일식을 이용하여 계산한다.

(1) 도로
도로의 경우는 지도를 바탕으로 하여 주요 도로를 선정하고 각 교차로를 중심으로 교통량의 변화가 일어나게 됨으로 교차로를 분기점으로 하여 일일교통량, 차량의 수도와 소/대형 차량의 비율을 조사·측정한다. 자료의 조사는 서울시청 환경자원부 교통국에 제공된 교통일람장과 자료를 이용한다.

도로소음예측은 독일의 RLS90/DIN18005에 의하여 계산한다. 주요도로 선정기준은 시도간 교통량 800대이상이며 대형 차량의 분류기준은 2.8cm이상으로 한다. (시도간 800대에는 대상지역의 주요 도로의 교통량을 고려하여 선택한 입의적 기준이며 2.8cm는 RLS90에 의한 분류기준이다.)

RLS90/DIN18005

운원모델

\[
L_{eq} = L_{eq}(25,\text{basic}) + C_g + C_s + C_{0} + C_{mf}
\]

여기서 \(L_{eq}(25,\text{basic})\)는 소형차 100km/h, 대형차 80km/h의속력으로 직선의 아스팔트 도로를 달리는 데의 소음으로하며 다음과 같이 구한다.

\[
L_{eq}(25,\text{basic}) = 57.3 + 10 \log (M \times (1 + 0.0082 \times P))
\]

여기서 \(M\)는 시간경험교통량(veh/h)이나 일일평균교통량(ADT)을 말하고 \(P\)는 2.8cm이 넘는 차량의 비율을 말한다.

\[C_g\]는 차량 속도, \[C_s\]는 노면의 종류, \[C_{0}\]는 노면의 경사, \[C_{mf}\]는 다중반사의 효과에 의한 보정치이다.

\[
L_{eq} = L_{eq}(25,\text{basic}) + C_g + C_s + C_{0} + C_{mf}
\]

여기서 \(L_{eq}(25,\text{basic})\)는 운전자의 방향에 따라 \(C_g\)는 도로구간의 장이, \(C_{0}\)는 음의 확산, \(C_{mf}\)는 지표소음과 기상의 영향, \(C_{mf}\)는 장애물에 의한 영향에 의한 보정치이다.

(2) 철도
철도소음은 Schall03/DIN18005에 의해 계산하며 철도 열차는 크게 화물과 여객열차로 분류하고 각각의 속도와 일일통행장수를 조사한다. 자료조사는 철도시설공단 철도 열차 운행표를 이용하였다.

\[
L_{eq} = 10 \log \left[10^{g9} \times \sum D_{k} + D_{1} + D_{0} + D_{4} + D_{5} + D_{N} \right]
\]

여기서 5dB는 열차의 기본소음이며 \(D_{k}\)는 \(D_{1}\)과 \(D_{2}\)는 특정 열차에 따른 상수로 \(D_{k}\)는 열차의 종류이고 \(D_{1}\)와 \(D_{2}\)는 \(D_{1}\)은 차량의 높이, \(D_{2}\)은 \(D_{2}\)는 \(D_{2}\)보다 작은 차량의 경우, \(D_{3}\)는 다른 (bridge), \(D_{4}\)는 수면 교차(Level crossings), \(D_{5}\)는 \(D_{5}\)보다 작은 차량의 경우, \(D_{N}\)는 \(D_{N}\)보다 큰 차량의 경우에 \(D_{N}\)를 \(D_{N}\)로 사서 늘려서 계산한다.

\[
L_{eq} = L_{eq}(25,\text{basic}) + 9.2 + 10 \log \left[D_{1} + D_{4} + D_{s} + D_{b} + D_{w} + \text{Bonus} \right]
\]

\(L_{eq}\)는 독일의 계산기준에 의한 소음계정에서의 소음계정과 \(L_{eq}\)는 \(L_{eq}\)의 기준량에 대한 선임의 한 효과 값이다. \(D_{1}\)은 운전자의 방향, \(D_{2}\)는 음의 확산, \(D_{3}\)는 지형과 기상에 의한 것, \(D_{4}\)는 \(D_{4}\)이 \(D_{4}\)보다 높은 도로의 경우, \(D_{5}\)는 \(D_{5}\)보다 높은 도로의 경우에 \(D_{5}\)를 \(D_{5}\)로 사서 늘려서 계산한다.

4. 연구 결과

4.1 소음원의 계산

Figure 2는 대상지역내의 도로망을 나타낸 그림이고 이 중 선정기준에 부합하는 도로를 선정하여 모델 제작시 운용으로 적용한다. 대상지역내의 기준을 만족하는 도로의 총 길이는 약 5km 정도이며 이 도로 간에 40여개 정도의
교통자료를 이루고 있다.

Figure 2 Road map in the subject area

Figure 3 DGM (Digital Ground Map) using spot height (Left) / DGM using spot height and elevation line (Right)

현장과 자료조사에서 얻어낸 대표적인 도로에서의 교통량을 <Table 1>에 나타내었다. 교통량은 평일 일일 교통량이다.

<table>
<thead>
<tr>
<th>연번</th>
<th>도로</th>
<th>길이(m)</th>
<th>교통량</th>
<th>조사일자</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>망우로1</td>
<td>175m</td>
<td>105863</td>
<td>'02.11</td>
</tr>
<tr>
<td>2</td>
<td>망우로2</td>
<td>413m</td>
<td>76950</td>
<td>'02.11</td>
</tr>
<tr>
<td>3</td>
<td>망우로3</td>
<td>276m</td>
<td>72590</td>
<td>'02.11</td>
</tr>
<tr>
<td>4</td>
<td>망우로4</td>
<td>485m</td>
<td>66433</td>
<td>'02.11</td>
</tr>
<tr>
<td>5</td>
<td>망우로5</td>
<td>291m</td>
<td>79483</td>
<td>'02.11</td>
</tr>
<tr>
<td>6</td>
<td>망우로6</td>
<td>362m</td>
<td>95883</td>
<td>'02.05</td>
</tr>
<tr>
<td>7</td>
<td>망우로7</td>
<td>400m</td>
<td>78583</td>
<td>'02.05</td>
</tr>
<tr>
<td>8</td>
<td>망우로8</td>
<td>305m</td>
<td>73667</td>
<td>'02.05</td>
</tr>
<tr>
<td>9</td>
<td>망우로9</td>
<td>1200m</td>
<td>75317</td>
<td>'02.05</td>
</tr>
<tr>
<td>10</td>
<td>목거리선도로</td>
<td>420m</td>
<td>127500</td>
<td>'04.09</td>
</tr>
<tr>
<td>11</td>
<td>동부건선도로</td>
<td>5200m</td>
<td>88662</td>
<td>'03.06</td>
</tr>
</tbody>
</table>

* 출처: 서울시 교통국 교통량 평가자료 및 실측

Table 1. Traffic volume of main roads

4.2 소음지도 제작과정

(1) 지형자료의 불일치

수집된 지형자료는 크게 표고점과 동고선으로 분류할 수 있다. 하지만 수집된 자료에서 동고선과 표고점 사이에 불일치되는 지점이 있었다. 이에 대해 오차가 10m이상이었고, 이러한 경우 동고선보다는 표고점이 더욱 정확한 지표가 된다. 그러나 표고점에 의한 경우 점과 정하기의 변화나 표고점이 없는 지역을 예측하기는 힘들다는 단점이 있다.

소음의 특성상 지형의 고·저차는 중요한 변수로써 적지 않은 오차로 인해서 영향 평가의 결과 또한 시각적으로 달라질 수밖에 없다. 따라서 정확한 소음지도의 제작을 위해서는 공인된 정확하고 적절한 지형자료가 필요하다.

<Figure 3>는 표고점에 의한 지형도모델과 동고선과 표고점을 이용한 지형도모델의 비교결과이다.

표고점에 의한 지형모델의 경우는 표고점이 없는 부분, 고도가 높은 산악지형의 표현이 부족함을 알 수 있다. 평야지형의 경우는 자세한 형태의 지형표현이 가능하지만 많은 수의 표고점 때문에 모델의 제작시간이 오래 걸리는 단점이 있다. 따라서 표고점을 간략화 시키고 동고선자료를 이용하여 보강하는 것이 현재로서 가장 효율적인 방법이라고 판단된다.

(2) 속성데이터의 수집

(3) 결과의 출력

제작된 모델을 바탕으로 대상지역의 소음지도를 제작한다. 소음지도 제작을 위해서 사용프로그램인 SoundPlan을 사용하였으며 <Figure 4>에 결과를 나타내었다.

- 방음벽은 무시 : 방음벽 자료를 구할 수 없음.
5. 결론

소음지도제작에 있어서 가장 필요한 것은 필요한 자료수
득의 용이성이라고 하겠다. 대상지역의 크기가 커짐수록 요
구되는 자료는 기하학적으로 늘어나게 되고 이러한
자료들은 개인이나 소유의 노력으로 수집된 자료간의 오차로 연구결
과 또한 상반된 결과를 가져올 수도 있다. 우리나라에서도
1995년부터 디지털화된 수치지도의 필요성을 인식하고
NGIS사업을 통해서 다년간 데이터를 축적하고 있으며 앞
으로 좀 더 다양한 자료를 구축하고 이를 다방면으로 활용
되어있지 검은 것으로 기대되고 있다. 그러나 이것만 가지고는 소
음지도가 활성화 될 수 있는 것은 아니다. 표준만 즉, 제작
저침들이 마련되지 못하면 서로 다른 제작 방식과 적용기
준에 의하여 제작되는 소음지도 간에 서로 다른 결과를 보
일 수밖에 없다. 따라서 합리적인 표준만 마련이 시급하다.

소음지도는 소음 문제에 있어서 더 나은 해결책을 제시해
줄 수 있는 하나의 방법이라고 생각한다. 소음지도를 활용
하면 정밀을 요구하는 시설주변의 소음관리나 소음측정기
점의 원인 파악, 도로계획이나 도시계획에 따른 참고자료로
서의 활용 등 좀 더 종합적으로 체계적인 소음문제로의 접
근이 가능해질 수 있을 것으로 기대된다.

항후 연구 과제

- 도시계획에서의 소음지도 활용

참고 문헌

(1) 박선인, 박상규, 2003, “정론한 도시환경을 위한 소음
지도 개발 및 응용연구”, 춘계학술대회논문집, 한국소음진
등공학회, pp. 1182~1186
(2) 행제의 외 1명, 2002, “ArcGIS”, 한남ESRI교육센터, 1
장
(3) Birmingham Environmental & Consumer Services
Department/DETR, 2000, A Report on the Production of
Noise Maps of the City of Birmingham, Birmingham
(4) Lee, seungil, 1998, Unmueteveragichte rarmliche
Stadtentwicklung fur Kwangju in Sud Korea,
Promotionsschrift, Dortmund

Table 2. The change of noise level depend on land use
* dE=거주인구수/ha, dG=총사수/ha, dB=(거주인구수+총사수)/ha