Tabebuia impertiginosa Martius ex DC(Taheebo)의 혈소판 응집 억제 활성에 관한 연구

서범석*, 고관영*, 박영현*, 박병수**, 장석근*
*순천향대학교 자연과학대학, **서울대학교 동생명공학교실
e-mail: changsk@sch.ac.kr

Studies on antiplatelet activity of Tabebuia impertiginosa Martius ex DC(Taheebo)

Beom-seok Seo*, Gwan-Young Go*, Young-Hyun Park*, Byeoung-Su Park**, Sung-Keun Chang*
*College of Natural Sciences, Soonchunhyang University
**School of Agricultural Biotechnology, Seoul National University

Abstract
Platelet aggregation is a complex phenomenon that probably involves several intracellular biochemical pathways. When activated, platelets change shape, aggregate and release the contents of their intracellular granules. The interactions between platelets and blood vessel walls are important in the development of thrombosis and cardiovascular diseases. When blood vessels are damaged, platelet aggregation occurs rapidly to form haemostatic plugs or arterial thrombi at the sites of vessel injury or in regions where blood flow is disturbed. These thrombi are the source of thromboembolic complications of atherosclerosis, heart attacks, stroke, and peripheral vascular disease. Therefore, the inhibition of platelet function represents a promising approach for the prevention of thrombosis. Plants constitute a rich source of bioactive chemicals such as phenolics, terpenoids and alkaloids. Plant extracts may be an alternative to currently used medicinal source because they constitute a rich source of bioactive chemicals.

This study was performed to investigate the antiplatelet activity of extract of Tabebuia impertiginosa Martius ex DC (Taheebo) and find out which fractions to this activity in rabbit platelet. Taheebo was methanol extracted and solvent fractionated in to five fractions (hexane, chloroform, ethylacetate, butanol and water). And each fractions were investigated inhibitory effects on platelet aggregation induced by various agonists using washed rabbit platelets in vitro.

Key words: Tabebuia impertiginosa Martius ex DC (Taheebo), Platelet aggregation

1. 서론
급속한 경제 발전과 생활수준의 향상으로 동물성 식품 및 지방의 섭취가 증가함에 따라 고과 영양 결핍성 질환은 감소하는데 반하여 과영양과 불균형 섭취로 인한 성인형 질환 발생은 급격히 증가하고 있는 추세이다[1]. 이러한 질환은 혈관 장애로 혈액과 혈전의 원인으로 혈액 중에서도 혈소판의 응집력 약진에 기인한다고 한다. 혈소판의 주요 기능은 물리적, 화학적 자극에 의해 혈관이 손상되면 활성화되어 방출, 점착, 변형, 응집함으로써 혈액 유지를 방지하는 지혈작용(haemostasis)에 중요한 역할을 담당하는 것이다. 그러나 어떤 병적인 증상에 의해 과도하게 활성화될 경우에도 유발하는 혈전생성의 주요 인자로서 알려져 있다. 따라서 혈소판은 혈관 취약 지역의 혈관의 응집력을 잡고, 혈소판의 응집여부 및 효능이 지정된 연구에 있어 매우 중요한 인자로서 인식·이용되고 있다[1~4]. 최근에는 혈소판 활성화를 억제하는 천연물 중에서 생리활성 물질의 효과를 정점 및 연구하여 혈관의 응집, 체외, 생체 조절 기능을 갖는 기능성 식품 및 의약품 개발은 식생활과 관련된 성인병의 가장 좋은 대처 방안으로
기대되고 있다.

T. impetiginosa Martius ex DC(Taheebo)는 능소화과(Bignoniaceae), Tabebuia속, impetiginos 종에 속한 식물로 높이는 약 30m, 줄기의 직경 50 cm이 1.5m 정도로 성장하며, 야마촌 강 유역의 일부 지역에 자생하는 다년생 식물이다[6, 10, 11]. 국내에 서 연구된 약용작용으로는 소염진동 및 강심작용이 보고되었고, Teheebo 수피에 매출을 추출물이 항 중앙작용을 하는 것으로 보고 되어 있으며, Taheebo에서 분리된 lapachol은 항암작용을 하는 것으로 보고 있으며, 현재 국내에서 차(tea)나 화장품 등으로 판매되고 있다.

본 연구에서는 **T. impetiginosa** Martius ex DC(Taheebo)가 균식활성과 혈전의 중요한 발병요인인 혈전형성에 뛰어난 역제성을 나타낼 수 있는 천연소재임을 확인하였다.

2. 재료 및 방법

2.1. 실험동물 및 시약

실험에 사용된 토끼(New zealand white)는 2~2.5 kg되는 수컷을 석양(Onsan, Korea)에서 구입하여 사용하였다. 생리활성물질 분리 및 활성평가소재는 FRONTIER(IA,USA)사에서 구입한 T. impetiginosa Martius ex DC(Taheebo)를 사용하였다.

Collagen, thrombin, arachidonic acid는 Chrono Co.(PA, USA)에서 PAF는 Sigma Co.(St. Louis, Mo, USA)에서 구입하였다.

Column chromatography용 silica gel은 kiesegel 60(70~240, 240~400 mesh, Merck)을 사용하였으며, TLC plate는 kiesegel 60(Merck)을 사용하였다.

본 실험에 사용한 모든 용매는 증류하여 사용하였고, 그 외 시약은 분석용 특급지시약을 사용하였다.

2.2. 혈소판 항니까 조사

토끼 혈액을 ACD 용액(65mM citric acid, 85mM trisodium citrate, 2% glucose)에 채혈한 후 혈액량의 1/6, 1,600×g로 10분간 원심 분리하였다. 상등액(platelet rich plasma, PRP)을 분리하여 1,400×g로 10분간 원심 분리하였다. 혈전물을 제거한 후 PRP를 37℃에서 15분간 인큐베이션하고, 3,000×g로 10분간 원심 분리하였다. 상등액을 버리고 혈전물을 1차 HEPES buffer로 부유시킨 후 15분간 인큐베이션 후 3,000×g로 10분간 원심분리한 후, 2차 HEPES buffer로 부유시킨 후 15분간 인큐베이션 시키고, 3,000×g로 원심 분리하였다. 3차 HEPES buffer로 혈 소판수가 4×10⁶ cells/mL로 되도록 3차 buffer를 첨가 하고 화학적 측정 혈소판 부유액을 조제하여 사용하였다.

Table 1. Compositions of Buffers

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Glucose</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>HEPES</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>BSA</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>EGTA</td>
<td>5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>pH</td>
<td>6.5</td>
<td>6.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Buffer solution: NaCl 40g, KCl 1g, MgCl₂·6H₂O 1g/2L

Glucose solution: 5g/500ml

BSA(Bovine Serum Albumin) solution: 0.35g/10ml

NaH₂PO₄ solution: 2.25g/500ml

HEPES solution: 4.5g/500ml

EGTA solution: 0.135g/200ml

2.3. 혈소판 활성화 작용 측정

혈소판 활성화 변경과 염증작용은 폐포로도 변화를 이용한 혈관포도 측정장치(Aggregometer 470-VS, Chrono-Log Co., USA)를 사용하였다. 토끼 세정 혈소판 부유액 250μL을 취하여 CaCl₂ 1mM을 첨가하고 1,000rpm에서 교반하면서 37℃로 incubation시킨 후 3분이 경과한 후에 collagen(10μg/mL)을 투과하여 혈소판 응집을 유도하였다. 혈소판 활성화 억제 작용은 collagen으로 유도된 aggregation(%)을 대조군(A)으로, Taheebo 분획물을 전처리한 후 유도된 aggregation(%)을 시료군(B)으로 하여 다음 계산식에 따라 inhibition(%)으로 나타내었다.

inhibition 억제율(%) = \[\frac{A - B}{A} \times 100\]

A: control aggregation (%)
B: sample aggregation (%)

2.4. Teheebo의 혈소판 활성화에 작용하는 생리 활성 물질의 분리

T. impetiginosa Martius ex DC(5kg)를 methanol (MeOH)로 식온에서 45L로 추출하였다. 얻어진 364.2g의 추출물은 hexane, chloroform, ethyl acetate, butanol을 각각 1.5L씩 3회에 걸쳐 분리하였다. 얻어진 용매 분획물을 혈소판 응집억제
활성도를 측정하여 가장 활성이 높은 chloroform 층을 silica gel chromatography를 이용하여 분리하였다.(Fig. 1)

Chloroform 추출물을 TLC(CHCl3:MeOH=9:1, 8:2, 7:3)로 확인하고 HPLC(LC-10AD, Shimadzu, Japan)로 Cosmosil ODS 케럼(4.6×250mm), 이동상 (MeOH-ACN-0.1%, H3PO4(25:20:55, v/v/v), 검출파장 254nm, 유속 1.3ml/min의 조건에서 유효성분을 분리 정제하였다.(Table 2, 3.)

![Fig. 1. Isolation of subfractions from chloroform of *T. impetiginosa* Martius ex DC.](image)

Table 2. Operating conditions of analytical HPLC

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Shimadzu LC-10AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>Cosmosil MS-5(4.6×250 mm)</td>
</tr>
<tr>
<td>Detector</td>
<td>Shimadzu SPD-10A</td>
</tr>
<tr>
<td>gradient elution starting with MeOH-ACN-0.1% (vol%) H3PO4(25:20:55 v/v/v) for 5min, then in 20min with linear increase to MeOH-ACN-0.1% (vol%) H3PO4(25:45:30 v/v/v)</td>
<td></td>
</tr>
<tr>
<td>Mobil. phase</td>
<td>1.3 ml/min</td>
</tr>
<tr>
<td>UV Range</td>
<td>254nm</td>
</tr>
</tbody>
</table>

Table 3. Operating conditions of preparative HPLC

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Shimadzu LC-10AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>Shim-pack PREP-SUL(20.0 mm ID × 25 cm)</td>
</tr>
<tr>
<td>Detector</td>
<td>Shimadzu SPD-10A</td>
</tr>
<tr>
<td>gradient elution starting with MeOH-ACN-0.1% (vol%) H3PO4(25:20:55 v/v/v) for 5min, then in 20min with linear increase to MeOH-ACN-0.1% (vol%) H3PO4(25:45:20 v/v/v)</td>
<td></td>
</tr>
<tr>
<td>Mobil. phase</td>
<td>1.3 ml/min</td>
</tr>
<tr>
<td>UV Range</td>
<td>254nm</td>
</tr>
</tbody>
</table>

3. 결과 및 고찰

T. impetiginosa Martius ex DC(5 kg)를 45 L의 맥산으로 실온에서 추출하여 얻어진 맥산 추출물액을 40℃에서 기압·농축하여 조 추출물을 364.2g을 얻었으며, 다양한 혈소판 응집유발인자로 유도된 혈소판 응집에 대한 역제활성을 측정한 결과, collagen과 arachidonic acid로 유도된 혈소판 응집에 대해 높은 응집 억제활성을 확인하였다.

![Fig. 2. Effect of methanol extract from *T. impetiginosa* Martius ex DC on platelet aggregation induced by various agonist.](image)

![Fig. 3. Effect of T2 subfraction from *T. impetiginosa* Martius ex DC on platelet aggregation induced by various agonist.](image)

따라서, 조 추출물을 column chromatography법을 이용하여 Fig. 1에서와 같은 방법으로 다섯 개의 1차 소분획(T1~T5)을 얻어 혈소판 응집억제활성을 측정하였으며, 그중 가장 높은 역제효과를 나타내는 T2 분획을 HPLC를 이용하여 4개의 2차 소분획 (T2-1~T2-4)으로 분리하였다.(Fig. 3~4.)

4개의 2차 소분획을 다양한 응집유발인자로 유도된 혈소판 응집에 대한 응집억제활성을 측정한 결과, collagen과 arachidonic acid로 유도한 혈소판 응집에 대하여 높은 활성을 나타내었으며, thrombin과 PAF
로 유도한 혈소판 응집에 대하여는 응집억제활성을 나타내지 않음을 확인하였다.(Fig. 5-8.)

1. T2-1(rt : 5.71min) : 124.4mg
2. T2-2(rt : 10.522min) : 364.2mg
3. T2-3(rt : 14.117min) : 392.7mg
4. T2-4(rt : 20.165min) : 232.4mg

Fig. 4. HPLC profile of isolated T2 fraction from T. impetiginosa Martius ex DC.

Fig. 5. Effect of T2-1 subfraction from T. impetiginosa Martius ex DC on platelet aggregation induced by various agonist.

Fig. 6. Effect of T2-2 subfraction from T. impetiginosa Martius ex DC on platelet aggregation induced by various agonist.

Fig. 7. Effect of T2-3 subfraction from T. impetiginosa Martius ex DC on platelet aggregation induced by various agonist.

Fig. 8. Effect of T2-4 subfraction from T. impetiginosa Martius ex DC on platelet aggregation induced by various agonist.

3. 결론

본 연구에서는, 소염진통, 강식작용, 항응고작용 및 항균투성을 하는 것으로 보고된 T. impetiginosa Martius ex DC(Taheeb)를 대상으로 현대사회의 주요사망원인으로 나타나는 뇌혈관질환의 중요 한 관련 유발인자인 혈소판활성에 대한 응집억제활 성능을 분석하였으며, 본 연구의 결과는 문헌에 대하여 혈소판 응집억제활성에 대한 연구하였다.

본 연구 결과, 인위적 결과를 통해 T. impetiginosa Martius ex DC(Taheeb)가 뇌혈관질환의 중요 발병요인인 혈전형성에 휘어난 응집억제성을 나타낼 수 있는 천연소재임을 확인하였다.

4. 감사의 글

본 연구는 한국과학연구원 제공 순천향대학교 차세 대 BIT무성극연구센터(R12-2002-007-0100-0)의 지원으로 수행되었습니다.
참고문헌

[12] Junko Koyama, Izumi Morita, Kiyoshi Tagahara, Kei-Ichi Hirai : Cyclopentene dialdehydes from Tabebuia impetiginosa

