Adsorption of Pentacene(C$_{22}$H$_{14}$) on Si (100)-2x1 by Using NEXAFS and PES

Han-Koo Lee, Jin-hee Han, Ki-jeong Kim*, Kyuwook Ihm*, Tai-Hee Kang*, Bongsoo-Kim
Departments of Physics, POSTECH, and Pohang accelerator Laboratory, San 31, Hyojadong, Namgu, Pohang, Kyung-Buk, Korea,
*Pohang accelerator Laboratory, San 31, Hyojadong, Namgu, Pohang, Kyung-Buk, Korea

Pentacene absorption on Si (100)-(2x1) surface at 340 K was investigated by using photoemission spectroscopy (PES) and near edge X-ray absorption fine structure (NEXAFS) at the carbon K-edge. The C 1s core- levels of pentacene adsorbates were consisted of two different components, which is represented carbon atoms with or without a direct Si-C bond. The observed intensity ratio of two components is 1.4 at the monolayer, indicating that the pentacene absorbats exist mostly as the model of tetra dimer structure$^{(1)}$. NEXAFS spectra indicated that pentacene molecules were predominately physisorbed the layer by layer mode on Si(100)-2x1 surface for multilayer coverage, whereas pentacene molecules were chemisorbs on Si (100)-(2x1) surface for monolayer. Adsorption angle of pentacene molecules was calculated through π^* transition. The angle between the double bond and the silicon surface of $\sim 50^\circ$, 65$^\circ$ and 76$^\circ$ at monolayer, 2L and 4L, respectively.

[References]