발광층에 유기 불순물 주입에 따른 유기발광소자의 전계발광 메카니즘

양희원*, 윤희배**, 서지훈**, 김영균**, 곽계달*, 김태환*

한양대학교 정보통신공학과, *한양대학교 전자통신컴퓨터공학과,
**홍익대학교 정보디스플레이공학과

효율 및 수명이 중진된 유기발광소자를 제작하기 위하여 전계발광 메카니즘을 규명하는 것은 중요하다. 불순물을 발광층에 각각 주입할 때 유기발광소자의 효율 및 수명이 변화하는 원인을 규명하는 연구가 필요하다. 발광층에 불순물의 주입에 따른 유기 발광소자의 발광 메
카니즘을 실험적인 결과를 기초로 하여 규명하였다. 정공수송층으로 N, N'-bis-(1-naphthyl)-N,
N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) 유기물층을 사용하였으며 발광층과 전자수송층
으로 tris-(8-hydroxyquinolone) aluminum (Alq3) 유기물층을 사용하였다. NPB/Alq3 이중 혼합
구조를 가진 유기 발광소자의 발광층에 Rubrene을 첨가한 소자를 제작하였다. 전압-전류, 전
압-발광세기, 전류-발광효율 및 전류-전력 효율의 특성 변화를 각 소자에 대하여 관찰하였으
며 전압의 변화에 따른 색 변화의 안정성과 조사하였다. 유기발광소자의 전하주입 효과와 엽
시온의 형성 과정은 각 소자의 발광효율에 영향을 미치며 Förster 에너지 전달과 Rubrene의 정
공포화효과와 관련하여 각 소자의 발광 효율을 규명하였다.(1,2) Rubrene 불순물을 주입한 유
기발광소자에서 정공포화효과가 유기발광소자의 발광특성에 중요한 역할을 하는 것을 관찰
하였다. 위와 같은 결과는 불순물을 첨가하여 형성한 여러 가지 유기발광소자의 효율이 증가
하는 원인을 이해하는데 도움이 된다.

이 논문은 2004년도 한국학술진흥재단의 지원에 의하여 연구되었음. (KRF-2004-005-D00166)

[참고문헌]