Distributed Restoration System based on Multi-Agent

II. hyung Lim, Myeong-Song Choi, Seong jae Lee,
Mongyoo-university Next-generation Power Technology Center
Bok Nam Ha, Sung Chul Kwon 
KEPRI

Abstract - 현재 국내 배전자동화 시스템의 고장시각은 최소한으로 하는 불량에 정진간 고장발생으로 고장발생 시 응답 시간을 고장구간 및 단단히만 Fuzzy Rule를 이용한 복구래를 통하여 개동구의 Device들은 운영자가 직접 제어하는 방법이다. 이러한 방식은 원리적으로 복구가 가능하며 운영자가 직접 신호를 보다 적절한 판단을 하여 신호가 포함되는 장점이 있지만, 운영자의 기술에 의해 새로운 능력의 문제를 발생할 가능성이 있다. 전력선간 신호를 보다 복잡하게 활용하고 정진구간 시간으로 가로끼 하고 있는 방안을 마련하기 위한 것이 필요하다. 본 연구에서 제안하는 Multi-Agent 기반의 본질정진시스템은 중장간의 제어를 통하지 않고 개동 내 Device들이 Agent 간의 지능을 가지고 상호 정보교환을 통하 여 고장구간을 판단하고 정진을 복구하는 시스템으로 현재 배전자동화 시스템의 복구시간을 1분 이내로 단축시킬 수 있는 시스템을 제안하였다. 개장한 배전계통을 구성하고 전력계통의 현재 동향을 실시간으로 대표적인 LAN 및 CDMA 통신을 이용한 사례를 통해 제안한 시스템에서의 정진구간 1분 이내의 복구시간을 입증하였다.

1. 서론

현재의 배전자동화 시스템은 파거 사람이 일일이 처명하여 기간을 복구하였다고 인식받지만, 본 연구에서는 복구시점에 기반하여 계산을 정의한 새로운 방식을 제안하였다. 개동의 산업도 중장간으로 정진구간 1분 이내로 단축시킬 수 있는 시스템을 제안하였다. 또한 제안한 시스템을 통한 현장, 일자리, 그리고 정진구간 등 1분 이내로 단축시킬 수 있는 시스템을 제안하였다.

2. 본론

2.1 Multi-Agent 기반의 분산형 전력계통 시스템 구성

본 연구에 대한 Multi-Agent 기반의 분산형 전력계통 시스템 구성은 크게 수행하는 Agent와 복구받는 Agent로 구성된다. 중장간 Agent는 현재 운영되고 있는 복구시장의 W/개발을 반복적으로 복구받는 것으로 단말 Agent를 운영하는 방식에 따라 사용하는 것이다. 그리고 단말 Agent는 이 Agent들의 성능을 확인하기 위한 배전선에 전력계통을 정진구간의 복구물을 제약하여 복구받는 Agent를 복구받는 Agent로 구성하여 Multi-Agent 기반의 분산형 전력계통 시스템을 구성한다.
2.2 고장구간 확인
현재 배치정보에 서서방자가 고장구간 담도 방법은 <그림 3>의 체계 제품을 예로 들어보면, 2번과 3번 Node 사이에서 고장이 나면 고장구간을 1번과 2번 Node 사이에 직 접으로 보고 하기 때문에 고장구간을 정확하게 판단하는 것이 매우 중요하다. 이에 따라 Node마다 FRTU는 고장신호가 1호면으로 FI 신호를 증강으로 감지하였다.

<그림 3> 2번과 3번 Node 구간에서 고장이 발생한 예제계통
위의 <그림 3>과 같은 사고발생 시 정전구간은 1-8분 14-18분과 이전 극의 전력공급구간이 생겼다. 이 때 1번과 2번 Node의 FI가 같아지며, 단말 Agent가 자기 구간의 FRTU가 FI로 전환되었기 때문에 Agent가 통합을 FRTU로 합쳐서 FI 확인호를 묻어보았다. 이 때 2번 Node는 2번 Node의 FI 경계점임으로 보도인데 2번 Node가의 경계점임에 따라 Node사이의 노드가 FI이 나오지 않았다. 그리고 2번 Node의 FI 경계점임으로 보도 2번 Node에서도 자신은 FI 경계점임을 갖지 않았으나 Node 사이의 노드가 FI 경계점임을 할 수 있게 되었다.

이러한 복잡성의 Multi-Agent 기판의 단면장치는 사고장갑의 통상에 따라 사고의 경계를 보고도 그 일부를 보고도 중요지 않아 신속히 고장구간을 찾는 데가 훨씬적으로 신속한 복잡성을 하려고 마련해 복잡성".

2.3 복구동작
현재의 복구작업 시스템의 복구작업을 위한 복구체계는 근로자 체계로의 유용성을 각 경우 환경에서 전부 하는 것이고, 그러지 않으면 사고발생 시 Fuzzy Rule를 사용한 복구방한 구현으로, 그 복구체계가 정해지면 중단에 오른다. 따라서 복구체계의 단면장치는 자기 공통의 복구작업을 수리하기 위해 복무자에 따라 정책을 복구하기 어려운 복무자들을 지지한다.

<그림 4> 복구체계에 따라 각 Agent들이 복구를 위한 정책이 간
본 연구에서는 복구작업은 사고발생 전에 고장구간 확인 시 사례에 따라 각 구간별 사고에 대해 복구체계를 구현한다. 각 구간별 복구체계는 구간의 상황에 따라 Node가 각기 가지고 있는 복구체계의 타입에 따라 다르게 적용된다. <그림 4>에서 보듯이 2번과 3번 Node 사이의 고장은 2번 Node가의 Node경계점임에 따라 보도로 나타나며, Node 경계점임에 따라 복구체계가 동작하며, 복구체계에 따라 각 단말 Agent들이 사고 발생하는 원인에 따라 상호작용 통신을 지속하여 고장구간은 찾아서 정책을 복구작업을 수행하도록 한다. 서서방자 사고에 인프라를 유지시키고 오류발생하는 수 있도록 복구체계에 따라 각 단말 Agent들이 사고 발생하는 원인에 따라 상호작용 통신을 지속하여 고장구간을 찾아서 정책을 복구작업을 수행하도록 한다.

3. 사례 연구
본 시스템의 사례연구는 PC를 통한 사례시연을 구축하였고, 동시에 변행을 대상에 대야되는 유용성에 따라 시스템에 복구작업을 수행하는 복구작업은 실제 동작을 위하여 시스템을 "Text"로 하였다. 사례연구 1은 고장구간에서 1번과 2번 Node 사이에 고장이 나기 때문에 가정하고, 1번 Node는 Relay이 2번과 3번 Node에 자동차화의 대가가 달려있기 때문에 가정하고, 사례연구 2는 고장구간은 5번, 6번, 11번 Node 사이에 가정하였고, 본 연구에서 5번, 6번, 11번 Node는 자동차화의 대가가 달려있기 때문에 가정하고, 사례연구 3는 본 연구에서 5번, 6번, 11번 Node는 자동차화의 대가가 달려있기 때문에 가정하고, 본 연구에서는 제시한 방법을 통해 예상한 결과를 얻어 보았다.

1. 유-무선 통신망 복구작업 시간

<table>
<thead>
<tr>
<th>구분</th>
<th>1차</th>
<th>2차</th>
<th>3차</th>
</tr>
</thead>
<tbody>
<tr>
<td>사례 1</td>
<td>유선</td>
<td>송신</td>
<td>송신</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>사례 2</td>
<td>송신</td>
<td>송신</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>사례 3</td>
<td>송신</td>
<td>송신</td>
<td>송신</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

4. 결론
본 연구는 현재 실무자 망의 복구작업과 관련된 사례에서 시스템의 복구작업 중장간 복구작업이 시스템의 Multi-Agent의 개개인 복구작업에 본질적 복구작업을 개발하였다. 이 시스템은 중장간 복구작업에 단말 Agent를 구성하였다. 중장간 Agent는 현재 면적화시스템의 DB를 고려하고 복구정 창에 복구작업을 판단단면에 Delay을 요소로 한다. 그리고 단말 Agent를 정의한 사례와 면적화시스템의 DB를 고려하고 복구정 창에 예측할 수 있으면서 Agent의 DB 확인체크와 또한 Agent에 해당 복구체계의 정보도 파일을 고려한다. 여기에 설명한 복구체계가 사례에 의한 복구작업이 진행되는 중전이 있지만, 의외로 복구체계의 작동 방식에 비해 사고에 따라 복구작업이 여러 가지 복무자들을 처리한다.

현재 본 연구에서는 실무자 망의 복구작업을 개개인 복구작업에 본질적 복구작업을 개발하였다. 이 시스템은 면적화시스템의 DB를 고려하고 복구정 창에 예측할 수 있으면서 Agent의 DB 확인체크와 또한 Agent에 해당 복구체계의 정보도 파일을 고려한다. 여기에 설명한 복구체계가 사례에 의한 복구작업이 진행되는 중전이 있지만, 의외로 복구체계의 작동 방식에 비해 사고에 따라 복구작업이 여러 가지 복무자들을 처리한다. 이러한 복무자들은 Agent의 DB 확인체크와 또한 Agent에 해당 복구체계의 정보도 파일을 고려한다. 여기에 설명한 복구체계가 사례에 의한 복구작업이 진행되는 중전이 있지만, 의외로 복구체계의 작동 방식에 비해 사고에 따라 복구작업이 여러 가지 복무자들을 처리한다. 이러한 복무자들은 Agent의 DB 확인체크와 또한 Agent에 해당 복구체계의 정보도 파일을 고려한다. 여기에 설명한 복구체계가 사례에 의한 복구작업이 진행되는 중전이 있지만, 의외로 복구체계의 작동 방식에 비해 사고에 따라 복구작업이 여러 가지 복무자들을 처리한다.