Application of FMECA with Stochastic Approach to Reliability-Centered Maintenance of Electric Power Plants in Korean Power Systems

* Dept. of Electrical Engineering, Hanyang University, ** KPX

Abstract - Preventive maintenance can avoid the generation utilities to reduce cost and gain more profit in a competitive supply-side power market. So, it is necessary to perform reliability analysis on the systems in which reliability is essential. In this paper, RCM (Reliability-Centered Maintenance) analytical method is adopted using real historical failure data in Korean power plants. Therefore, the reliability-based Probability model for predicting the failures of components in the power plant is also established, and application to FMECA (Failure Mode Effects and Criticality Analysis) consideration of failure probability. Based on the weighting ranking of generating equipments which status to be probability estimation by FMECA, the FMECA is an engineering approach and a core activity performed by reliability engineers to review the effects of probable failure modes of generating equipments and assemblies of the power system on system performance. The results of this paper show that application of FMECA with stochastic approach to the preventive maintenance can efficiently avoid decreasing the cost on maintenance and hence improve the total benefit.

1. 서론

신뢰도 기반 유지보수(RCM: Reliability-Centered Maintenance)는 각 설비가 파악한 운용 환경에 따른 설비의 중요도 및 피로성과 분석(FMECA: Failure Modes and Effects Analysis)을 통해 설비의 목표를 달성하기 위한 가장 효율적이고 경제적인 유지보수계획을 수립한다. 또한, RCM은 단일한 세부 유지보수 기법이 아니라 안전성과 정상성을 바탕으로 한 기존의 예방 유지보수(Preventive Maintenance) 기법인 TBM(Time-based Maintenance)와 CBM(Condition-based Maintenance)을 효과적으로 함께 고려하여 설비의 유지보수 기법을 제시하는 방법이다.

- TBM: 설비의 수행기간이나 상태에 관계없이 일정 시간 간격으로 유지보수를 하는 방법
- CBM: 설비 상태에 관계없이 전진기법의 유지보수방법을 갖기 위해 설비의 수행과 경도(Severity)를 고려한 새로운 지수를 이용한 확률적 FMECA(Failure Mode Effects and Criticality Analysis) 기법을 제안함으로써 CBM의 유지보수 기법을 제시하였다. 본 논문의 사례분석에서는 우리나라 전력업계에서 비중이 높은 설비의 복합연합기의 고장위험도를 더하기 위하여 통계적 분석 방법인 Type II Censoring을 이용하여 Weibull 분포의 모수를 추정하여, 고장위험도 예측기반으로서의 고장위험도를 판단하였다. 계산된 고장위험도를 이용하여 FMECA의 세로도 지수 IOC(Index of Criticality)를 평가하여 신뢰도 기반 유지보수 계획을 수립할 수 있게 되었다.

2. 통계적 분석 방법을 이용한 고장 확률밀도함수 구현

확률분포의 FMECA 기법을 이용하여 발생기의 유지보수(경보나 수리) 순위를 선정하기 위해서는 kettle을 구성하고 있는 각 요소의 위험도나 노후도를 먼저 고려해야 한다.

![그림 1] 모수 추정 순서도

본 논문에서는 이러한 순서를 결정하기 위해서 각 요소의 위험도와 노후도를 고려한 고장확률밀도함수를 이용하였다. 고장확률밀도함수의 구현은 여러 확률밀도함수를 구현할 수 있고 형태가 유연한 Weibull 분포를 이용하였다. 또한 Weibull 분포는 저주파수와 높은 주파수의 노후를 고려할 수 있다는 장점도 지니고 있다. 결국 FMECA 기법을 사용하여 설계도 기반의 유지보수계획을 수립하기 위해서는 발견기를 구성하고 있는 각 요소에 대한 Weibull 구현이 문제가 되며, 이를 계산하기 위하여 기존의 연구에서는 Gradient Decent Method 등 여러 방법을 사용하였지만 본 논문에서는 Weibull 분포의 모수추정이 간단하며, 상파미 정렬한 통계적 분석방법인 Type II Censoring 기법을 사용하였다. 그림 1은 모수추정 과정의 순서를 보여준다.

발생기의 구조적 파라미터를 예상하여 Weibull 분포의 모수추정을 구현하였다. 발전기에서 판매의 고장확률밀도함수는 다음과 같은 방정식이 있다.

\[\lambda(t) = \frac{\lambda_0}{(t + \theta)^{\gamma}} \]

(1)

\[t = t_0 + \alpha \ln \left(\frac{1}{2n} \right) \]

(2)

\[S(t) = 1 - e^{-\lambda t} \]

(3)

\[S(t) = 1 - e^{-\lambda t} \]

(4)

\[\lambda(t) = \frac{1}{(t + \theta)^{\gamma}} \]

(5)

\[\log(-\log S(t)) = \beta \log t - \alpha \log \log t \]

(6)

따라서 등 (5)와 (6)에 의해서 Weibull 분포의 생존함수는 log-log(t)와 log(-log(-log S(t)))으로 나타나는 선형함수다. 이 선형함수의 기울기와 절편을 각각 \(\alpha \)와 \(\beta \)라고 하면 간단히 \(\lambda(t) = \frac{1}{(t + \theta)^{\gamma}} \)라고 할 수 있으며, \(\beta \)와 \(\alpha \)의 값을 구할 수 있다.
Weibull 분포의 확률밀도함수는 식 (7)과 같이 정의된다.

\[f(t) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1} \exp\left[-\left(\frac{t}{\alpha}\right)^{\beta}\right] \] (7)

여기서, \(\alpha > 0, \beta > 0\) 이고, \(\alpha, \beta > 0\)이다.

3. 사례연구 - Type II Censoring 기법을 이용한 복합화학적 반응의 FMECA 검사

사례연구에서는 우리나라 전력계약을 복합화학적 반응설비의 피자가 고장설
적석식(1977.12-2003.12)을 취하여 공단 복합화학적 반응기 #2의 각 구성요소의 변형량과 보고지를 분석하였으며, 이 요소별로 다룬 신장전도도를 교체하
기 위하여 선형화 복합화학적 반응설비가 가장 높은 반응설비의 설
치년도인 1977년을 기준으로 고장확률밀도함수를 Weibull 분포로 이용하여 계산하였으며 또한 복합화학적 반응설비는 16개의 구성요소로 분류하였다. 통계
적 분석 방법인 Type II Censoring을 이용하기 위해서는 여러 복합화학적 반
응설비의 각 요소별의 설치년도가 동일해야 한다. 따라서 1977년을 기준으로 설치
여의 복합화학적 반응설비의 설치년도를 균일화 하였으며, 특정 설
치년도가 나왔을 경우 설치시간으로 설치년도가 1977년 이후로 이동된 고장
설비를 계산하였고 예외 12개의 구성요소 중 비교적 고장이 많았던 제거방법과 기기별로
에 대해 통계적 분석 방법인 Type II Censoring을 이용하여 검증할 시
한 것을 그림 2에 나타내었다.

예를 12개의 구성요소 중 비교적 고장이 많았던 제거방법과 기기별로에 대해 통계적 분석 방법인 Type II Censoring을 이용하여 검증할 시
한 것을 그림 2에 나타내었다.

![Figure 2: Weibull distribution for components and observed data](image)

표 1은 복합화학적 반응설비 구성요소의 각 요소의 Weibull 분포의 비모수 추정을 위한 일정함수로 계산하였다.

![Table 1: Component Probability and Observed Data](image)

표 1은 복합화학적 반응설비 구성요소의 각 요소의 Weibull 분포의 비모수 추정을 위한 일정함수로 계산하였다.

\[IOC(t) = \text{Failure Probability}(t) \times \text{Severity} \] (6)

![Figure 3: Failure Density Function](image)

만한 관측사항에서 주의성을 높이려면 '가스터빈 폐쇄실'을 제거 후
선하여 주의보수를 해야 할 만하다. 통계 IOC 지표가 적절한 TBM 기
로에 5.5만큼 이상의 'Over - haul' 행하는 주의보수는 장기적인 관찰
으로 보면 매우 중요한 것으로 생각된다.

4. 결 론

본 논문에서 제시한 FMECA 점검표

FMECA(Failure Mode Effects and Critical Analysis)

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Failure</th>
<th>Effect</th>
<th>Severity</th>
<th>Occurrence</th>
<th>Failure Probability</th>
</tr>
</thead>
</table>
| 가스 펌프의

![Table 2: FMECA Table](image)

[참고 문헌]

