글루타르알데히드 처리가 향다랑어 젤라틴의 생체 접착성에 미치는 영향

문제환. 노혜진. 안주런. 김선봉
부경대학교 식품공학과

서론

생체접착은 전면 또는 합성 고분자와 생체 목표 조직 간의 부착과정으로 접착 접착, 수소결합, 염 결합, 염 사이의 이온 결합과 같은 복합적인 결합 요인에 의해 발생하는 현상이다. 생체접착체로 사용되어지기 위해서는 목표 조직에 대한 지극히 적어야 하고, 특성이 남아야 하며 적절한 유동성, 생분해성 등의 성질이 요구되간다. 이러한 성질을 모두 만족시키는 동시에 분자 내 가교의 형성 시 현재 의료용 접착제로 널리 사용되어지고 있는 fibrin glue 보다 높은 접착 특성을 보이는 물질로 젤라틴을 들 수 있다. 젤라틴은 콜라겐으로부터 유도되는 결제조직 단백질로 식품, 의약, 사전 산업 등의 다양한 분야에 사용 되어지고 있는 생분해가 전면 고분자 물질이다. 그러나 전면의 젤라틴은 기계적인 특성과의 경우에는 매우 약한 특성을 보이며, 특히 수분에 의해 폐윤된 상태라면 접착력이 상당히 감소하는 것으로 알려져 의료, 산업적 이용에 한계를 보인다. 또한 대부분의 상업적으로 제조 되어지는 젤라틴은 소와 돼지로부터 얻어지는 것으로 들 육상동물들은 최근 빈번히 발생하는 BSE 와 foot/mouth diseases 의 원인이 된다므로 사용에 한계를 보인다. 따라서 본 연구에서는 육상동물 유래 젤라틴에 대한 대안으로서 yellowfin tuna 의 부산물로 발생하는 킃질로부터 젤라틴을 추출하여 안전성을 확보하였고, 필름을 제작하여 glutaraldehyde 를 도입함으로써 젤라틴 필름의 접착력 향상 을 도모하여 쥐 접착과의 접착 특성을 알아보고 잠재 접착 젤라틴 필름의 생체 접착 물질로서의 응용 가능성을 구명하고자 한다.

제료 및 방법

6.67%의 젤라틴 수용액을 폴리스틱 틀 위에 붓고 25±1°C, RH 50±1% 의 조건에서 24 h 동안 건조시켜 0.001 mm 두께의 필름을 제조하였다. 제조된 필름은 1×1×0.01 cm 크기로 자른 다음 0.5 M glutaraldehyde를 함유한 50 ml 의 pH 7 phosphate-citrate buffer solution 에 담처리하여 60°C에서 2 h 동안 반지한 후 증류수에 행구고 상온에서 24 h 동안 건조시켜 glutaraldehyde 처리를 하였다. 상업 가열 건조법을 이용하여 다른 농도로 제조된 glutaraldehyde-젤라틴 필름의 건조량을 측정한 다음 25°C 에서 15 h 동안 증류수 중에 침지한 후 필름의 습증량을 측정하여 수분 함량을 구하였다. Scanning electron microscope 를 이용하여 glutaraldehyde 교차결합 젤라틴 내부 구조를 분석하였다. 쥐 접착과의 접착력 측정은 접착면적이 1×1 cm 로 균일하도록 하여, 접착면적에 1 kgf 의 힘을 가한 후 Universal testing machine (Instron 1011, USA)을 사용하여
maximum load 값으로 5 회 반복하여 측정하였다. 몫을 중의 free aldehyde group 양 측정은 젤라틴 필름용 1 ml의 0.1 M 2-mercaptethylamine hydrochloride 수용액상에 침지하여 aldehyde 그룹용 thiol 그룹을 바꾸고 schiff base를 줄이기 위해 2.5% sodium borohydride pH 10 carbonate-buffered solution에 침지한 후 thiol-disulfide 교환 반응이 일어나도록 하여 UV-spectrophotometer를 사용하여 412 nm에서 유리된 thionitro benzoate anion (II)을 함유한 용액의 흡수량을 측정하여 계산하였다.

결과 및 요약

Glutaraldehyde-solution에 Natural gelatin film을 침지 시켰을 경우 쥐 격판과의 접착 특성이 상당히 향상되었으며, 이 때 glutaraldehyde-solution농도는 0.5 M 이상, 온도는 60℃ 이상에서, pH는 중성 부근에서, 침지시간은 2 h 이상 침지 시킬 경우 300 gf/cm² 이상의 접착력을 나타내므로써 66 gf/cm²의 접착력을 보인 Natural gelatin film보다 약 5 배까지 접착 특성이 상승하였다. 조건 별로 glutaraldehyde를 도입시킨 젤라틴 필름 중의 알데히드 그룹의 얐 또한 접착 특성과 거의 같은 변동 경향을 보였으며, 환원제인 Sodium borohydride (NaBH₄)와 내부에 아미노기를 가진 glycine을 glutaraldehyde-gelatin film과 반응 시켰을 경우, 접착력이 Natural gelatin film의 수준으로 감소하는 것으로 보아, 알데히드 그룹이 조작의 아미노 그룹과 반응함으로서 조작 접착에 큰 영향을 미친다는 것을 알 수 있었다. 또한 쥐에 소 젤라틴의 접착 특성과 비교하였을 경우 침지 격판 젤라틴의 접착 특성이 극소하게 높은 특성을 보임으로써, 생체 접착 물질로서의 응용 가능성을 충분히 가지는 것으로 판단된다.

참고문헌