PDP을 위한 새로운 저가형 에너지 회수 회로

김태성, 최성욱, 문건우, 윤영중
한국과학기술원

A new low-cost energy-recovery circuit for a plasma display panel

Tae-Sung Kim, Seong-Wook Choi, Gun-Woo Moon, and Myung-Joong Youn
KAIST

ABSTRACT

A new low-cost energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. It has two auxiliary switches clamped on a half sustain voltage, and inductor currents are built up before the PDP is charged and discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

1. Introduction

Since the PDP has advantages such as a wide view angle, lightness, thinness, high contrast, and large screen, it is one of the most leading candidates for large screen TVs. Generally, the PDP can be equivalently regarded as a capacitance load \(C_p \). Therefore, when a sustain voltage \(V_s \) is alternatively applied across the PDP using full bridge inverter, there are the considerable energy loss of \(2C_pV_s^2 \) per each cycle, excessive surge current, and severe EMI noise.

To solve these problems, several approaches have been proposed. Among them, Weber's circuit shown in Fig. 1(a) features a low conduction loss and high performance [1]. However, it has several disadvantages. There is a severe voltage drop across a parasitic resistance, which results in the serious hard switching, excessive surge current, serious power dissipation, severe EMI noise, and poor energy-recovery capability. Also, a large gas-discharge current causes a serious voltage notch across the PDP. Above all, it uses four auxiliary switches having voltage stress of \(V_s/2 \), which results in high cost.

Sakai's circuit shown in Fig. 1(b) features a simple structure and good energy-recovery performance [2]. However, it still has disadvantage that voltage drop due to a parasitic resistance causes the serious hard switching, severe voltage notch, excessive surge current, serious power dissipation, severe EMI noise, and poor energy-recovery capability. Moreover, voltage stress of two auxiliary switches in ERC is \(V_s \), which results in high cost.

(a) Weber's circuit

(b) Sakai's circuit

Fig. 1 Prior circuits

To overcome these drawbacks of prior circuits, A new low-cost ERC for the PDP is proposed as shown in Fig. 2(a). Since the proposed circuit has two auxiliary switches clamped on \(V_s/2 \) instead of four auxiliary switches clamped on \(V_s \) for Weber's circuit and two auxiliary switches clamped on \(V_s \) for Sakai's
circuit, it features a lower cost of the production compared with prior circuits. Furthermore, the inductor currents are built up before the PDP is charged and discharged. These built-up inductor currents help to fully charge and discharge the PDP with fast transition time, achieve ZVS of main switches, and reduce the EMI noises. In particular, since these compensate for a large gas-discharge current, there is no severe voltage notch, and the current stress of main switches can be reduced effectively. Therefore, the proposed circuit features the high energy-recovery capability.

Mode 2(t_1-t_2): When M_5 and M_6 are turned off at t_1, mode 2 begins. L_1 and L_2 begins to charge C_5 and C_6, and discharge C_3 and C_4 with initial conditions of $v_{C_5}(t_1)=-V_S$ and $i_{C_5}(t_1)=i_{C_6}(t_1)=V_S/(2L)$. The voltage v_{C_3} decreases linearly with slope $-V_S/(2L)$ through C_5, M_6, d_{C_5}, and D_1. i_{C_6} decreases linearly with slope $-V_S/(2L)$ through D_2, d_{C_6}, M_5, and C_5. Therefore, M_1 and M_2 can be turned on under ZVS, and C_5 is fully charged to V_S.

Mode 3(t_2-t_3): When M_1 and M_2 are turned on at t_2, mode 3 begins. i_{C_1} fed back to an input voltage source through C_{out}, M_3, d_{C_1}, and M_4 compensates for a large part of the gas-discharge current through M_4, and i_{C_2} fed back to an input voltage source through M_5, d_{C_2}, M_5, and C_{out} compensates for a large part of the gas-discharge current through M_5. Therefore, the current stress of M_1 and M_2 can be considerably reduced as well as the voltage notch across the PDP can be effectively overcome. In this mode, when i_{C_1} and i_{C_2} decrease to zero, M_5 and M_6 are turned off. Voltages across M_5 and M_6 are clamped on $V_S/2$ due to C_{out} and C_{out} which results in a low cost. Therefore, the proposed circuit features the fully charged/discharged PDP, ZVS of main switches, no severe hard switching, less power dissipation, low surge current, and low EMI noise due to built-up inductor currents. Furthermore, it shows the high energy-recovery capability.

The circuit operation of t_3-t_6 is symmetric to that of t_0-t_3.

3. Design considerations

Since the brightness of a PDP depends on the operation frequency and transition time, the transition time $T_d=t_2-t_1$ is required to be as fast as possible. The built-up time, $\Delta t_L=t_1-t_0$ ($=t_3-t_3$), of $L_1=L_2$ can be determined from the equation (1) as follows:

$$\Delta t_L = \frac{\sqrt{2L(C_p+C_{out})}}{\tan[T_d/(2\sqrt{2L(C_p+C_{out}))}]}$$

Fig. 2 Proposed circuit and its key waveforms

Fig. 2(b) shows key waveforms of the proposed circuit. One cycle operation is divided into six modes. It is assumed that C_1, C_2, C_3, and C_4 are equal to C_{out}. V_{C_1} and V_{C_2} are equal to $V_S/2$, and L_1 and L_2 are equal to L.

Mode 1(t_0-t_1): When M_3 and M_4 are turned on at t_0, mode 1 begins. Since $V_S/2$ is applied across L_1 and L_2, i_{C_1} and i_{C_2} increase linearly with slope of $V_S/(2L)$.

\[v_{C_3}(t) = -V_S \cos(a(t-t_1)) + I_{th} \sqrt{\frac{2L}{C_p+C_{out}}} \sin(a(t-t_1)) \] (1)

where $\omega = 1/(2L(C_p+C_{out}))^{0.5}$. As shown in equation (1), v_{C_3} increases from $-V_S$ by resonance between $2L$ and (C_p+C_{out}). And then, when v_{C_3} is clamped on V_S, the gas-discharge begins to take place. i_{C_1} decreases linearly with slope $-V_S/(2L)$ through C_5, M_6, d_{C_5}, and D_1. i_{C_2} decreases linearly with slope $-V_S/(2L)$ through D_2, d_{C_2}, M_5, and C_5. Therefore, M_1 and M_2 can be turned on under ZVS, and C_5 is fully charged to V_S.
4. Experimental results

To verify the behavior and analysis of the proposed circuit, the prototype circuit is implemented with specifications of $f_s=50$ kHz, $C_p=2nF$ (6-inch PDP), $L=L_1+L_2=730\mu H$, transition time $\leq 800\mu s$, and $M_1=M_2=2SK2995$. Fig. 3 shows the experimental results of the proposed circuit. As shown in Fig. 3(a), C_p is fully charged to V_s or $-V_s$ without hard switching due to built-up inductor currents. Moreover, since i_{L1} and i_{L2} compensate for the large amount of the gas-discharge current, the current stress of main switches and voltage notch are effectively reduced. M_2 and M_3 are turned on under ZVS without severe hard switching due to built-up inductor currents as shown in Fig. 3(b).

5. Conclusions

A new low-cost ERC for the PDP has been proposed. The proposed circuit has two auxiliary switches clamped on $V_s/2$, which results in a lower cost of the production compared with prior circuits. Due to the built-up inductor currents, the PDP is fully charged and discharged without hard switching, the ZVS of main switches is achieved, and the EMI noises is reduced. Moreover, since these compensate for a large gas-discharge current, there is no severe voltage notch, and the current stress of main switches can be reduced effectively. The proposed circuit features the high energy-recovery capability. Therefore, it is expected to be suitable for the low-cost PDP.

References