Study on the measuring system of power quality for transmission system

Yeoung Noh Kim*, Bong Il Shin*, Hee Chul Lee*
No Hong Kwak, Young soo Jeon, Sang Ho Park**, Il Moo Lee**
PSDTECH.Inc.* Korea Electric Power Research Institute** MicroPower***

ABSTRACT

The additional matters appear to be considered in several aspects for building up power-quality measuring system of transmission system(high voltage system) compared to distribution system(middle or low voltage system). Like in distribution system, input signals are also received from PT and CT source of voltage and current respectively in transmission system and applied in accordance with a certain rate. In this case, very big error rate can be occurred according to the specification of the measuring system as the applying rate is bigger than in distribution system beyond comparison. In addition, when the abnormal signal occurred such as sag/swell, interruption, transient etc., power quality of other sites linked to the system also should be checked to find the accurate cause of the abnormal power-quality signals from the corresponding site. Accordingly, the accurate diagnosis on the condition of power quality for the system depends on the way how the synchronization system is brought along for each site.

This paper will suggest the solution for the most effective system building focused on how to solve the problem of the error rate and synchronization described in the above when building up the measuring system of power quality for transmission system.

1. 서 론

송전계통에 전압 및 전류를 기반으로 전력품질을 측정하는 것과는 별개로 전력품질은 전력의 높은 수준에서 고급 전력품질을 측정하는 것이며, 전력품질은 전력품질 측정기 투입으로 인해 갑작스런 변화로 인한 결과를 가능하게 하고 있다. 따라서 전력품질의 측정에 있어서는 전력품질 측정기의 높은 신뢰성과 정확성이 요구되며, 이는 전력품질 측정 기기의 높은 정확성과 신뢰성을 높이기 위한 연구이다.

2. 본 론

2.1 송전계통의 전력품질 시스템

일반적인 전력품질 측정시스템은 저전압 전력품질 측정에서의 기반으로 기술적으로 제한이 있으나, 고전압 전력품질 측정에서는 정확한 신호를 제공하기 위한 연구가 필요하다. 이는 전력품질 측정기의 신뢰성과 정확성을 높이기 위한 연구이다. 이는 전력품질 측정기의 기반은 전력품질 측정시스템의 기반으로 기술하였다. 이는 전력품질 측정기의 기반으로 기술하였다.
표 1 전압 소스의 프로토콜 차이에 따른 값의 변화
Table 1 The variation of value according to the protocol of voltage source

<table>
<thead>
<tr>
<th>입력소스</th>
<th>표시된 상한값 값</th>
</tr>
</thead>
<tbody>
<tr>
<td>지리수(1)</td>
<td>91140</td>
</tr>
<tr>
<td>지리수(3)</td>
<td>91203.00</td>
</tr>
<tr>
<td>지리수(5)</td>
<td>91203.3640</td>
</tr>
</tbody>
</table>

표 1.에서 나타난 것과 같이 지리수 표현에 따라 독감은 소스를 입력받아도 크게 표시되는 값에 많은 차이가 있을 수 있다.

2.2.2. 피험설치 부분
일반적인 트랜스듬 장비는 피험설치를 하지 않고 RMS값으로만 전력품질의 상태에 대해 판단을 하고 있다. 가전디바이스 등이 휴대 애플리케이션의 경우 특수한 상황(경보 발생, 혹은 사용자 요청시)에서는 피험
설치가 가능할 때 전력품질 상태를 판단할 수 있다.
피험설치를 지원한다면 메모리 용량 처리 속도 등을 고려하여 하드웨어의 성능을 고려하여 적당한 Cycle을 결정하여 야 한다. 본 논문에 적용된 시험용의 경우 Sag/Swell 발생시에는 52 Sampling 5ACycle 발생시 4. 발생 후 50) 그 외의 상황에서는 256 Sampling 10Cycle 발생시 4. 발생 후 9을 적용하였다. Sag/Swell의 경우 필드기간이 짧은 32 Sampling 이상의 피험설치는 용량에 의한 모듈 유량도 안정적으로 가능할 수 있다. 다음은 실제 설계가기와 비교하여 충분한 고려기간. 그로 3.은 본 논문에서 사용한 시험용에 적용된 설계로 그림 4는 상용화되어 있는 필드실험 بن BMS PX5로 측정된 설계이다.

2.2.1 측정전압의 지리수 프로토콜
대부분의 트랜스듬 측정장비는 그 장비의 정밀도에 따라 지리수 프로토콜을 결정한다. 지리수 프로토콜은 보통 128 Sampling 장비의 경우 소수점 2짜리까지 표현을 하는 것으로 되어 있다. 이는 경우에 메모리확장에서는 MV계통의 22.5(kV)
계통에서도 배율이 13000:1 100 조정이기 때문에 배율이 120배 정도로 최소한 소수점 첫째자리까지는 표현이 가능하다. 그러 나 측정전압으로 가계 되면 하이파 모이지만. 측정전압은 전
압배율이 154[kV] 배율의 계통이 보통 1400배까지 되기 때문에 실제 전압을 측정시 배율을 곱해 하여 되면 소수점 지리수가 없
게 되는 경우가 대부분이. 측정전압에서 전압이 다소 차이가 있는 것이 수신 안정이기는 하지만 본 논문에서는 이 점을 적절
하지 않고 그 측정된 값을 다시 연산시켜 각 차수
별 고조파 전압을 산출하고 풍선치수를 산출하는데 매우 많
은 오차를 가집니다. 수 손으로

(a) 20% Sag 발생시
(b) 80% Sag 발생시
그림 3 Sag 발생시 파형잡음 1
Fig. 3 Waveform Capture in case of Sag 1

(a) 20% Sag 발생시
(b) 80% Sag 발생시
그림 4 Sag 발생시 파형잡음 2
Fig. 4 Waveform Capture in case of Sag 2

본 논문을 위한 시험용품에서는 5ACycle의 파형을 지원하기 때문에 이 부분을 손쉽게 발생한 Sag 파형도 같이 포함 nhất지만 오
려와 측정장비에서는 한변의 파형밖에 잘못 못한 것을 볼 수 있다.
각 상태별 부분과 설명하기에 설명된 것과 비슷한 수
치를 파악하는데는 큰 무리가 없을 것으로 판단된다.

2.2.3 동기화
동기화에 대한 부분은 송전계통의 여러 현상을 파악하는데 매우 중요한 부분을 차지하고 있다. 어떤 T/L에서 경로가 발생했는데 그러한 경로변화는 다른 T/L 및 MTR에 어떠한 영향을 주었는지 파악이 되지 않으면 계통 전반에 파악하기가 매우 어렵기 때문이다. 이러한 동기화에 대한 부분은 보통 GPS 기술의 발달로 인해 동기오차가 많이 줄어들었다. 그림 5는 본 논문의 시작부분에 기본적으로 적용되어 있는 GPS 동기의 설정화면이다. 태일 GPS 위성신호를 받아서를 통해서 각 장비에 동기시간을 설정해주고 있다.

그림 5 GPS 시간동기 설정화면
Fig. 5 Setting Screen of Time Synchronization

하지만 이러한 시간동기 역시 서버에서 각각의 동기신호의 동기신호 동기화에 따른 오차 및 각 장비의 시간 설정치 오차로 인하여 최대 1초까지의 시간오차를 가져올 수 있게 되며 이러한 오차는 각 장비별로 최대 5Cycle(당장에 비해 많은 파형을 저장함에도 불구하고)을 저장할 수 있는 장치의 성능과 대비해 동시간대의 파형을 가지고 각각의 계통을 비교 분석할 수 없는 경우가 발생할 수 있다. 따라서 이러한 방식이의 중 때 확실한 동기화 대비가 필요하게 된다. 따라서 본 시스템에서는 이러한 GPS 시간동기의 기능을 그대로 유지하면서 각 장비를 개개적으로 연결하여 어떠한 장비에서라도 파형발생 조건이 생성되면 무조건 같이 유지되도록 연결되어 있는 장비들은 동시간대의 파형을 보 내도록 필요를 보내주도록 하는 장치를 고안 부착하였다. 이러한 방식을 써도 경우 기기별 동기화는 최대 5Cycle 이내로 줄이어 정확한 분석을 할 수 있다. 그림 6은 동기화 모듈을 맘에 부착한 모습이다.

그림 6 동기화 모듈
Fig. 6 Synchronization Module

특히 부착되어 있는 장비는 총 10대이고 설계는 최대 40개의 장비를 동기화 시킬 수 있도록 되어 있다. 그림 7은 동기화 모듈의 설계된 IC의 내부 회로도이다.

그림 7 CPLD 내부 회로도
Fig. 7 Internal Circuit Diagram

내부회로도에는 10대에 대한 필요를 보 내도록 되어 있지만 총 40개까지 병렬로 추가가 가능하다. 신호를 받을 때 즉시 동기 필요를 보 내도록 설정한다.

다음은 두 대의 장비에 서로 다른 전압 소스를 입력하여 경보성을 발생하였 경우 파형이 동기화된 상황을 측정한 그림이다. (a)는 AC 220V 전원에 interrupting Event를 주어 경보가 발생하도록 하였고 (b)장비에는 AC 25V 전원을 주어 동기화된 시간에 파형이 올라오는 것을 확인하였다.

(a) AC 220V, interrupting Event 발생 (b) AC 25V
그림 8 동기화 실험
Fig. 8 Synchronization Test

표시시간이 정확하게 06년05월04일14시29초 41s로 표시됨을 확인하였다. 또한 동일 파형을 가하고 경보를 주었을 때도 정확한 파형이 정확히 올라오는 것을 확인하였다.

3. 결 론
본 논문에서는 송전계통의 전력품질을 측정할 때 고려할 사항으로 전압의 저수화 프로토콜, 파형원, 동기화에 대해서 어떻게 적용을 하며 보다 장비가 신뢰성을 가지고 분석에 도움이 될 수 있음을 연구하여 보였다. 저수화 프로토콜을 세밀하게 적용하더라도 잘 장비를 만들고도 PT배열이 높은 송전계통에서 큰 오차를 보일 수 있는 오류를 방지하였으며 고 신뢰도의 파형전원을 통해 일반적인 트랜드 정비로는 송전계통 내에 어떠한 점이 있을 수 있는 부분을 해결하였으며 전력품질을 전반적으로 동기화하여 분석하는데 기존장비가 가질 수 있는 오차로 간단한 CPLD를 활용하여 확실하게 줄임으로써 송전계통 분석이 더욱 용이하도록 하였다.

전력품질에 접점이 중요한 문제로 대두되고 있는 이 시점에 이러한 정확한 분석을 할 수 있는 기법을 지속적으로 개발 적용함으로써 전력품질 분야의 지속적인 발전을 도모하여야 할 것이다.

이 논문은 한국전력공사 전력연구원과 같이 시행하는 연구비 지원에 의하여 연구되었습니다.

참고 문헌