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Abstract: For most of the measuring methods of traditional control theory, measuring equipments
are located at the output of the system to measure quantities transformed from non-electrical form
into electrical one. This method helps us to define the value of parameters to be measured, but it has
limitation because it can only assess the efficiency of a movement process. That means we can not
understand the inner kinetics which is the essence of the system. In the modern control theory, states
of system are considered as the feedback to the control process, which helps us to assess the ele-
ments in the inside of the system. In this paper, we survey methods for estimating states being not
exposed to the correct measurements. Using this method, we also suggest an application for giving
an estimate of the traffic on the LSPs to adapt the network configuration for changing traffic condi-
tions.
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L Introduction section IV [7]. In which, we will introduce state es-

As widely known, states of system play a very timator based on the extended Kalman filter theory.
important role in the modem control theory because Finally, in section V, we present the application of
they are the feedback to the control process of the state estimation for giving an estimate of the traffic

plant [2]. It means that each state is available in the on the LSPs currently on MPLS network [10],[11].
output of system. However, measuring states, either

directly or indirectly, is often difficult-because of the 1L Role of the Estimator

many various reasons [7]. Therefore, it is necessary First of all, we should judge that for control prob-
to estimate states of system so that we can use them lem, both traditional and modem control methods
for -the control process, the measurement of net- use the feedback model. The signal used feedback in
work’s parameters as well as for the purpose of as- traditional process is output signal and itself ap-
sessing technologies [3]. One solution for state esti- peared derivative (Figure 2.1) while for the theory of
mation is to introduce additional process knowledge modem control, states are used as the feedback for

in the form of a model and constraints. The goal of control system (Figure 2.2).
state estimation is to reconstruct the state of a system

from process measurements and a model. u(t) ) y(t)
In this article, besides putting forward the matter Transfer Function

and going to the conclusion in opening way in sec-

tion VI, the article will concentrate on four main Contol with

matters. In section II, we present the role of estima- Transfer Function

tor as the feedback in the moder control theory [2], Figure 2.1. Feedback in Traditional Control

[4]. State estimation for linear time invariable dy-

namical system without disturbance is presented in u(t) YO

section I [1], [2], [12], in which we introduce ideal Transfer Function

assumption for easier survey and estimation. It has

significance in theory more than practical problem. |

Furthermore, state estimation for dynamical system State Estimator

which addresses many different challenges, includ-
ing nonlinear dynamics, states subject to hard con-

straints, disturbance and local optimal is presented in
- 145 -

Figure 2.2. Feedback in Modem Control
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In implementing this method; people often think
that states of system are available and measurable
signals. However, measuring the state, either directly
or indirectly is often difficult. Because of this, it is
necessary to estimate states of system so that we can
use them for the control process: the measurement
of network’s parameters as well as for the purpose of
assessing technologies. It means that we should de-
sign a state estimator in the output of system for con-
trol process.

Roughly, the goal of state estimation is to recon-
struct the state of a system from process measure-
ments and a model. For evident understanding, we
will consider the system consisting of relative prob-
lem as regulator, process, estimator and target calcu-
lation in the following figure (Figure 2.3).

Sensor Noise
dx

— = v l
Unmeasured f (x,uk ) tGw K
Disturbances Process Sensor —>

Regulator y, - h[xk) v,

X ,u % i
Target

Calculation | 2

T k
.u
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Figure 2.3. Role of estimator in control process

II1. State estimation for linear time-invariable
dynamical system
We will consider the n- dimensional linear time-
invariable dynamical equation:

FE: X = Ax + Bul 3.1
y=Cx (32)

in which: A, B, C are real constant matrices with al-
ternate dimension nxn, nxp, gxn.

It is assumed that state variables are not accessible
and the matrices A, B, C are completely known.
Hence the problem is to estimate or to generate x(t)
from the available input u(t) and output y(t) with the
knowledge of the matrices A, B and C. If we know
matrices A and B, we can duplicate the original sys-
tem as shown in Figure 3.1, We called the system an
open-loop estimator.

From Figure 3.1, we can easily identify that only
the input is used for estimation in case of an open-
loop estimator. It is conceivable that if both the out-
put and input are utilized, the performance of an es-
timator can be improved. Based on this idea, we can
design a state estimator as Figure 3.2. This estimator
wili be called an asymprotic state estimator.

telial =24 (2006.8.25-26)

Figure 3.2. An Asymptotic State Estimator

The dynamical equation of asymptotic state esti-
mator shown in Figure 3.2 is given by:

X = AX+Bu + L(y - CX) (3.3)
which can be written as:
% =(A-LC)x+Bu+Ly (34)

Above we have presented the basic theory of as-
ymptotic state estimator. In the following section, a
design algorithm will be mentioned.

Consider the n-dimensional dynamical equation:

FE: X =Ax+Bu 35)
y =Cx| G.6)

where A, B, and C are, respectively, nxn, nxp, gxn
real constant matrices . It is assumed that FE is irre-
ducible. We define the n-dimensional dynamical
equation:

z =Fz+ Gy + Hu 3.7

where F, G H are, respectively, nxn, nxg,and nxp
real constant matrices.

We can express a following theorem [2]: The
state z(t) in equation (3.7) is an estimation of Tx(t)
for some nxn real constant matrix T in the sense that
Z(t)-Tx(t) - 0 with any x(0), z(0) and u(t) if and
onlyiff:

— 146 —
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1.TA-FT=GC;
2.H=TB; 3.8)
3. All eigenvalues of F have negative real parts.

Based on this theorem, we show z(t) is estimation
of Tx(t). So we can now propose a design algorithm:

1. Choose an F so that all of its eigenvalues have
negative real parts and are disjoint from those of A;

2. Choose a G so that {F, G} being controllable;

3. Solve the unique T in TA-FT=GC;

4. If T is nonsingular, compute H=TB. The
equation (3.7) with K, G, and H is an estimate of

Tx(®) or X(") = T™'z(r), If T is singular, choose dif-
ferent F and/or G, and repeat the process.

IV. A Critical Evaluation of
Extended Kalman Filtering
1. Formulation of the Estimation Problem
In modem telecommunications engineering sys-
tems, most processes consist of continuous proc-
esses with discrete measurements. In general, one
derives a first principles model by assuming that the
continuous process is deterministic, and then one
uses Bayesian estimation to estimate the model pa-
rameters from process measurements. This model is

equivalent to:
= F(x;,u,,6) (4.12)
=h(x,)+v, (@.1b)

in which v, is a N(0, Rp) noise which denotes a nor-
mal distribution with mean 0 and covariance R, .

In contrast to equation (4.1), many recent models
permit random disturbances to affect the model
propagation step. Parameter estimation for nonlinear
variations of such models is a subject of on-going
research. For this work, we choose the discrete sto-
chastic system model:

Xii =F(xk,uk)+G(xk,uk)wk

A =h(xk)+vk

(4.2a)

(4.2b)

in which W, is a N(O, Q) noise.
Ideally, state estimators should solve the problem:

X, ~argmaxp(\rly0, .¥r) 4.3)
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) is the probability that the

in which p(x
state of the system is X, under given measure-

ments Yo>---- ¥7. Equation (4.3) is referred to as
the maximum likelihood estimate. In the special
case that the system is not constrained and in equa-
tion (4.2) satisfying:

1. F(ka“k) is linear with respect to x,,
2.h(x, ) is linear with respect to x,, and
£ P %

3.G ( X;,U k) is a constant matrix,

The maximum likelihood estimator is the Kalman
filter.

2. Extended Kalman Filtering (EKF)

The extended Kalman filter is one approximation
for calculating equation (4.3). The EKF linearizes
nonlinear systems, and applies the Kalman filter (the
optimal, unconstrained, linear state estimator) to ob-
tain the state estimates. The tacit approximation here
is that the process statistics are multivariate normal
distributions. We summarize the algorithm for im-
plementing the EKF presented by Stengel [8].

The assumed prior knowledge is identical to that
of the Kalman filter:

Xo given (4.4a)

) ZE[(x—;o)(x—;o )T} (4.4b)
R, = E[\'kv,{] (4.4¢)

Q. = El:wkw,{:] (4.4d)

The approximation uses the following lineariz-
ed portions of equation (4.2) to implement the fol-
lowing algorithm:

ch
@9, ¢ =—

V=N i1,

(4.6)

¥ Ry

_F(xu)

1. At each measurement time, compute the filter
gain L and update the state estimate and covariance
matrix:

-1
Lk:Pklk_z(l’;,[ By Cr +R, ] (4.7)

Kk~ iklk—l+Lk (y"' _h(xkl"’“ ))l 4.8)

X
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P

i = Bt Lk CiP

k-1 4.9)
2. Propagate the state estimate and covariance
matrix to the next measurement time via the equa-

tions:

X Fete F(ik Wy ) (4.10)

P A] +G,Q,G;

e = AxPys .11

3.Letk €k+ 1.Retumto step 1.

V. Application on Kalman Filter Estimation
Based LSP Capacity Allocation

Figure 5.1 show the role of state estimation on
TE problem having relative to planning process in
MPLS Networks. The following scheme performs
an optimal estimate of the amount of traffic utilizing
the LSP based on a measurement of the instantane-
ous traffic load. This estimate is used to forecast the
traffic bandwidth requests so that resources can be
provisioned on the LSP to satisfy the QoS of the re-
quests. The estimation is performed by the use of
Kalman filter theory as section I'V while the forecast
procedure is based on deriving the transient prob-
abilities of the possible system states.

LMPLS Topology ] I InputJ | Outpud
v

@suremenﬁ}istim@

Network

Dimensioning/Optimization

l Planning H Engineering Operation —I
Figure 5.1. Planning Process in MPLS

There exists an LSP (i,j) between two routers in
MPLS Network. We estimate the level of traffic on
this LSP, for a given traffic class, based on a peri-
odic measurement of the aggregate traffic on
LSP (i,j). We assume that the traffic measurements
are performed at discrete time-points mT (m= 1, 2,
..., M) for a given value of T. At the time instant m
(corresponding to mT), the aggregate traffic on the
LSP for a given traffic class is denoted by y(m).
We also assume that for the duration (0, MT], the
number of established sessions that use the LSPis N.
For each session, flows are defined as the active pe-
riods. So, each session has a sequence of flows sepa-
rated by periods of inactivity. For a given traffic class,

-1

we denote by x(m) the number of flows at the in-
stant m and by x(mT+f), t €(0, T] the number of
flows in the time interval (mT, (m+1)T], without
notational conflict. Clearly, x(m)<N and is not
known or measurable. We assume that each flow
within the traffic class has a constant rate of b bits
per second. So, nominally, for a traffic class:

3 () =ox(n) .

The only measurable variable in the system is
v(m ) which is a measure, corrupted by noise of the
aggregate traffic on the LSP. Nominally, x(m) = y(m)
/ b, but we do not have access to the correct meas-
urements of y(m), even though b is a known quan-
tity for a particular traffic class. Thus, we propose to
use the Kalman filter setup to evaluate X (.’7’), an
estimate of the actual X(m), using ‘—( "') the noisy
measurements. To this purpose, we define py(t), t €
(mT, (m+1)T] to be the probability that the number
of active flows at time ¢ is &, ie., for t E(mT,

(m+1)T1:

A

P, (t):prob{x(t) = k}

(5.2)

The state transition rate diagram is shown in fol-
lowing Figure 5.2. The diagram depicts transitions
among the states. The above model for the flows is
assumed to be Poisson with exponentially distrib-
uted interarrival times (parameter A ) and durations

(parameter p).

C(N&A (N-k)% I3
H (k+bp Nu

Figure 5.2. State Transition Rate

From the diagram and by using queuing theory
[9], we can write the following differential equations
(5.3)+5.5) for the probabilities py(t)

dp, ( l)
dt

= up, (t) —NJp, (r)
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LN R (1N (5)
dp;r(r) = APy (’)_N/‘I’N (’) (5

The generating function G(z, #)is defined as the z-
transform of the probability distribution function.
We calculate 6 G(z, £)/ 3 t using (5.3)~(5.5) as:

G(z,t)iiopj (,):_f 56
CGE_;") =G(z,/)N/€(z—1)—- 5('5:’) (2_1)(2;24—;1)

(&N))

Utilizing the initial condition G(z, mT) = 2%,
i.e., the number of active flows at time mT is x(m),
we arrive at the following solution for G(z, 1) fort &
(mT, (m+DT]:

Az+p

N
x(n)
G(.-'.,f)=C(:,f) (m} (5.8)

where:

Az+ p— ‘u(: - l)eat(}ﬁm

/1:—{-;1—,1(2_1)6—1(/1“1}

C(:,r):

(5.9

By the definition of the generating function and
the special properties of the z-transform, we get:

oG(z,T)

E[x(m+l){x(nz)]=

NA

o

=]

= x(m)e_”“”) + (l—e_n'{*m) (5.10)

At p
Thus, from the Kalman filter setup, we get:
i(m) = Ai(m —l)+B

+k (m)[¥(m)-caz(m~1)-CcB] (.11)

where k() is Kalman filter gain and:

SRYESNLHIE oA S EUE =2E (2006.8.25-26)

This gives an estimate of the traffic on the LSP
currently. This estimate will be used to forecast the
traffic for the purpose of resource reservation.

VL Conclusion

In this paper, we have presented the role of state
signals in the modem control theory and introduced
the basic methods of state estimation. Depending on
definite dynamic model (linear, nonlinear, distur-
bance, without disturbance, etc.), we can apply suit-
able methods. Many contents of this paper concen-
trate on state estimation based on the Kalman filter
theory as well as its extension. It is well established
that the Kalman filter is the optimal state esti-
mator for unconstrained, linear systems subject to
normally distributed state and noise in measurement.
However, many physical systems exhibit nonlinear
dynamics and have states subject to hard constraints.
Hence, Kalman filtering is no longer directly appli-
cable. As a result, many different types of nonlinear
state estimators have been proposed, such as ex-
tended Kalman filters, moving horizon estimation,
model inversion, and Bayesian estimation. In this
paper, we only present the outline of state estimation
for linear invariable dynamic system without distur-
bance and extended Kalman filters. Other types of
nonlinear state estimators and their application will
be researched in the future.
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