SIZ MRS5S SiAMEES &S =2 Vol 16, No. 1

dzFAo AAP

u )

T8, HARERE

=
EA—%, Agt

+dE IOt AuAATH, tHF LIRS T FTAR L AREABEHR

A Scalar Multiplication Algorithm Secure against Side-Channel
Attacks for Koblitz Curve Cryptosystems

Yong-Hee Jang®, Naofumi Takagi®, Kazuyoshi Takagi®, Yong-Jin Kwon

+

*Nagoya University, tHankuk Aviation University.

Abstract

Recently,

many power analysis attacks have been proposed. Since the attacks are

powerful, it is very important to implement cryptosystems securely against the attacks. We

propose countermeasures against power analysis attacks for elliptic curve cryptosystems

based on Koblitz curves (KCs), which are a special class of elliptic curves. That is, we

make our countermeasures be secure against SPA, DPA, and new DPA attacks, specially

RPA, ZPA, using a random point at each execution of elliptic curve scalar multiplication.

And since our countermeasures are designed to use the Frobenius map of KC, those are

very fast.

I. Introduction

Elliptic curve cryptosystem (ECC) has been
attracted much attention because of its short key
The key length of ECC is currently chosen
The
is suitable for mobile

size.
smaller than those of RSA cryptosystems.
small key size of ECC
devices like smart cards, mobile phones and PDAs
[8]. However, if an implementation is careless, an
attacker can recover the secret key of ECC by
using side-channel attacks (SCAs) such as timing
attack, fault attack and power analysis attack.
Thus, it is very important to defend SCAs on
ECC.

P. Kocher et al.[12] proposed attacks based on
simple and differential power analysis (SPA and
DPA, respectively) to recover the secret key by
monitoring and analyzing the power consumption
signals [2]. Since power attacks are known to be
practical and powerful [13],

the most many

randomization of the private exponent, blinding the

point, randomized projective(or Jacobian)
coordinates. And Joye—Tymen(9] proposed
countermeasures using random elliptic curve

isomorphisms. The above methods are the most
typical types of countermeasures in ECC. However,
these countermeasures have some  security
weaknesses.

Okeya-Sakurai[7] showed some weaknesses of
Coron’s first two countermeasures and asserted
that his 3rd countermeasure was secure. However,
Coron’s 3rd and Joye-Tymen’s countermeasures
can be broken by a refined power analysis (RPA)
as proposed by Goubin[4] [3]. And RPA is
generalized to zero-value point attack (ZPA) by
[11]. ZPA makes use of the fact that even if a
point zero-value auxiliary

registers used in the definition field might take

has no coordinate,

zero value. The Coron’'s third and Joye-Tymen’s

countermeasures do not protect against ZPA
countermeasures have been proposed to prevent tack
. attacks.
power analysis attacks. For ECC, Coronl5] )
. Cryptosystems based on Koblitz curves (KCs)
proposed three types of countermeasure:
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were proposed by N. Koblitz in [14]. Since such
cryptosystems offer significant advantage in terms
of reduced processing time, the cryptosystems are
quite attractive for practical applications [2]. And
specific parameters for Koblitz curves have been
proposed by NIST (the National
Standards and Technology)[15] and SECG (the
Standards for Efficient Cryptography Group)[16].

In this paper, we propose countermeasure
against SPA, DPA, and new DPA attacks, that is,
RPA and ZPA for KC-based cryptosystems. Our
countermeasure uses a random point to protect the

Institute of

above SCA attacks. By using a random point at

each execution of elliptic curve scalar
multiplication, we can make any point or any
register be changed at each execution. Thus, our
countermeasure is resistant against DPA, RPA,
and ZPA attacks.

to be secure against

Also we compute the scalar
SPA. Our
is designed to eliminate elliptic

multiplication

countermeasure
curve point doubling operation using the Frobenius
map of KC. Thus, our countermeasure is more
than the
accomplish both security against the above attacks

faster existing ones. That is, we

and improvement of the speed by using the

random point and the Frobenius map.

II. Preliminaries

2.1 Elliptic Curve Cryptosystems

An elliptic curve cryptosystem is the set of
points satisfying a bivariate cubic equation over a
field. For the finite field GF(2"), the standard
equation for an elliptic curve is the Weierstrass
equation as below:

V4zy=1+a’+5, 1)

where o, BE GF(2") and 3 =0. The points on
the curve are of the form P=(z,y), where z and
y are elements of GF(2"). The curve has a
special point O at infinity. The set of points on
the curve forms a commutative finite group under
the addition operation. And the point O is the
group identity.

Elliptic curve scalar multiplication is the basic
operation in elliptic curve cryptosystems. If a k is
a positive integer and P is a point on elliptic

curve, then the scalar multiplication kP is the

operation of adding a point P to itself k& times.
The standard algorithm to compute kP is called as
a binary algorithm as Algorithm 1.

Algorithm 1. The binary algorithm.
Input: k= (k,_,,-+.k,.ky)y, a point P
Output : @Q=kP
1. @ =0
2. for i=n—1 downto 0 do
Q= 2Q
if k,=1 then @ := Q+P
3. Return Q.

2.2 Koblitz Curves

Koblitz curves are a special class of elliptic
curves with following forms:

V¥ +ry=2"+az?+1, (2)

where o€ GF(2). Since the Koblitz curves are
defined over GF(2), if P=(z,y) is a point on
Koblitz curve, then so is the point (z%3?). Using
the addition rule of elliptic curve, we can verify
that

(z'y") +2(zy) = (=1)' " (z%y?) 3

for every point (z,y) on Koblitz curve. Using

(3), we can then obtain

r(z,y) = (@%y7), (4)
where T is a complex number which satisfies
?—(=1)!""*r+2=0, (5)

Equation (4) is referred to as the Frobenius
map over GF(2) [2].

A important meaning of (4) is as follows: If
the scalar %k is represented with radix 7, then, in
the computation of kP using Algorithm 1, the
operation @:=2Q is replaced by @:=7Q.

The latter

operations over GF(2") and completcly eliminates

corresponds to two squaring
much more costly elliptic curve point doubling
operations [2].

To take advantage of the Frobenius map in the
computation of scalar multiplication, the scalar k is

converted into a 7-adic representation. Let us

-1
denote this representation k= Znﬂ’. If we limit «;

i=0
to be 0 or 1 only, then {=2n [6). If we
compute the Algorithm 1 with the 7-adic
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representation of k, the loop will be executed
approximately 2n times; hence, about 2n elliptic
operations (only additions, no doubling) are needed.
Thus, 7-adic representation of & does not appear
to provide computational advantages to the Koblitz
curves. However, we can alleviate this problem by

reducing the %k in mod 7 —1 [2].

2.2 Power Analysis Attacks

Simple Power Analysis. A SPA consists in
observing the power consumption of one single
cxecution of a cryptographic algorithm. Algorithm
1 is vulnerable to the SPA. To resist against the
SPA, Coron[5] proposed a simple countermeasure
Algorithm 2,
doublc-and~add-always algorithm.

as in which is called as a

Algorithm 2. Double-and-add-always

algorithm
Input: k=(k”_,,---,k1’k0)2, a point P
Output : Q@Q=kP
1. Q] = 0
2. for i=n—1 downto 0 do
Qo) = 2Qlo]
Q) == Qo]+~
Qo) = QIx,].

3. Return @Q[0].

The double-and-add-always algorithm always
computes elliptic curve addition whether &, =0 or
though this algorithm is
resistant against the SPA attack, it
vulnerable to a DPA attack.

Differential Power Analysis. A DPA attack
is based on the same basic concept as a SPA
statistical and digital signal
techniques to extract very small
differences in the power consumption signals. In
DPA,
consumption should be changed at each new
Coron(5]
proposed three countermeasures to resist against

1. However, even

remains

attack, but use
processing
order to be resistant

against power

execution of the scalar multiplication.

DPA attacks: randomizing the private exponent Kk,
blinding the
projective(or Jacobian) coordinates.
Okeya-Sakurail7] showed the bias in Coron's 1st

point, and  randomizing the

and 2nd and asserted that

Coron’s 3rd countermeasure is secure enough [8].

countermeasures

Coron’s 3rd countermeasure is to randomize the
in the
Jacobian(or projective) coordinates by using the
relationship (X:¥:2) =(X*X:A*Y:)2) for A in the
finite field [8]. An enhanced version of Coron’s 3rd

representation of a point P=(X:Y:2)

countermeasure has been proposed by

Joye-Tymen[9]. Joye-Tymen’s countermeasurc
maps an underlying curve to a random isomorphic
curve. However, all these countermeasures are still
vulnerable against RPA, ZPA [3].
Refined Power Analysis
Point Goubin[4] proposed a
analysis using a special elliptic curve point with
zero value, which is defined as (z,0), (0,y). The
points (z,0) or (0,y) has still a zero value even if
it is converted into {(A*X:0:12) or (0:\3Y:)2)

by using Coron’s 3rd countermeasure. Similarly,

and Zero-value

Analysis. new

of Joye-Tymen
cannot randomize these points [1]. And also the

the randomized isomorphisms
method of Joye-Tymen does not apply for elliptic
curves over binary fields because the z-coordinate
of a point is invariant through isomorphism [9].
RPA is generalized to zero-value point analysis
(ZPA) by [111. RPA uses a special point which
has a zero-value coordinate. In a ZPA attack, on
the other hand, it makes use of any zero-value
addition
Joye-Tymen’s countermeasure do not
against ZPA attacks. The addition and doubling
formulae have a lot of each different operations

register  in formula, Coron’s or

protect

stored in auxiliary registers, one of which may
become zero.

HI. Proposed Countermeasure against
Side—Channel Attacks

In this
countermeasure for Koblitz curve. By using a

section, we show our new
random point at each execution of the elliptic

curve scalar multiplication, any point or any
register used in the addition formulae changes at
each execution. Thus, it is resistant against DPA,
RPA, ZPA. And also,

countermeasure can the Frobenius map of KC,

and since our

those are computationally more efficient than the
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existing alternative ones.

From now, we describe the idea of the
proposed countermeasure. Since the solutions (z,y)
to (2) are over GF(2"), we have 2% =z,

Consequently, we can get the following equation:
™(,y) = (2% y%) = (z,9)
(7' —1)(z,y) = O (6)
Thus, for the scalar multiplication kP, instead
of using k, we can use k(mod 7" —1). And we
k(mod 7"—1) into 7-adic NAF
representation of n-tuple (see [6] in details).

can represent

From (6), we can write
(r~)(7 "+ 2+ 1) (2yy) = O,
implying that
(" 7 e+ ) zy) = O, (7
Our countermeasure uses (7), a random point
R, and the reduced k(mod 7" —1) of T-adic NAF
representation of n-tuple to compute
EP+(7 7'+ 724+ .. +7+1)R=
(k™7 iy g7 T2 T ) P
(PP e+ )R
=(R+r,_ PV +(R+k,_,P)7" "+ +
(R+&,P)1+ (R+k,P). (®
In (8, (T 47" P+ 1+1)R= 0,
finally we can get kP. Algorithm 3 shows our

since

idea in details. Algorithm 3 makes all variables @,
Tl0], TM1l, and T(2] dependent on a random point
R, and thus let all variables of each addition differ
at each execution. ‘

Algorithm 3. The proposed scalar
multiplication algorithm
Input: A point P and k =k(mod 7" —1)=
(Kl )y, k5, €{—1,0,1}, that is, T-adic
NAF. '

Output: Q@=kP
1. R = randompoint()
2. T0) :== R, 7] := R+P, T2] := R—P

3.Q:=0

4, for i=n—1 downto 0 do
Q= Q
if x;, =0 then Q = Q-+ Tl0]
elseif k; =1 then @ = Q+ T(i]
else Q= Q+T[2].

5. Return @.

That is, by choosing R randomly, Algorithm 3
can be resistant against DPA, RPA, and ZPA,
since any special point or zero-value register used
in addition formulae changes at each execution.
Also, Algorithm 3 lets the
power-consumption pattern be fixed regardless of

since

the bit pattern of the scalar %, it is resistant
against SPA. And algorithm 3 is very fast because
it can use the Frobenius map of KC.

IV. Comparison

From the point of view of computation and

memory amount, Wwe compare our scalar
multiplication algorithm with previously reported
algorithms, that is, [3} and [10], which are secure
against SPA, DPA, RPA and ZPA. In [3], Mamiya
et al. recently proposed the countermeasure which
uses a random initial point R. The basic idea of
Mamiya et al. is to let 1 express 1=(111--1),

and computes kP+(111---1)R. In [3], however, it
is impossible to use the Frobenius map because
15 (111-- 1),

And the method proposed in [10] splits an
exponent and computes kP= | k/r] rP+(kmodr)P
by using a random number 7. The method of [10]
cost as the
(Algorithm 2)
with an extra point (rP) for computation.

computes by the same

add-and-double-always algorithm
Table 1 shows the comparison, where A4 D, or

F  shows elliptic curve addition, doubling, or

Frobenius map, respectively.

(#point, #scalar) | #D | #A | #F
ES[10] 4, 2) 0
BRIP [3] 3, 0) n 0
Algorithm 3 4, 0) 0 n

Table 1. Comparison with the existing
countermeasures

Our countermeasure, Algorithm 3, don’t require
elliptic curve doubling operations. The Frobenius
map is the squaring of the z and vy coordinates of
normal basis

the point. In a representation,

squaring is as simple as a cyclic shift of the bits
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of the operand. Thus, using a normal basis
representation, our countermeasures can compute
the elliptic curve scalar multiplication at very more

high speed than those of [3] and [10].

V. Conclusion

Side channel attacks such as power analysis
attacks have become serious threats. Thus, it is
very
securely against the attacks.

important to implement cryptosystems
And also, it is
important to design cryptosystems so that those
can be computed at high speed. In this paper, we
have proposed countermeasure for elliptic curve
cryptosystems based on Koblitz curves. Using the
random point and (7), we let our countermeasure
be resistant against ZPA, RPA, DPA, and SPA
attacks. Also since our countermeasure can the
Frobenius map of KC, those are computed very

fast.
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