유비쿼터스 센서 네트워크를 위한 ANTS 플랫폼에 지그비의 적용

김태홍, 김대영, 유성은, *양진영, *정민섭
한국정보통신대학교, *삼성종합기술원
{damiano, kimd, seyou}@icu.ac.kr, *(jyyang, mindolj}@samsung.com

Application of ZigBee to ANTS Platform for Ubiquitous Sensor Network

Taeong Kim, Daeyoung Kim, Seong-eun Yoo, *Jinyoung Yang, *Min-seop Jeong
Information and Communications University, *SAIT

요 약
본 논문은 에어 토폴로지의 안정성과 확장성, 에너지 효율성 등 다양한 장점을 지닌 지그비를 유비쿼터스 센서 네트워크 플랫폼에 적용해 볼 수 있으며, 센서 네트워크 플랫폼에서의 활용 가능성을 검토한다. 이를 위하여 센서종합기술원에서 개발 중인 지그비 프로토콜을 ICU의 ANTS 센서 네트워크 플랫폼에 도입하는 과정을 살펴보고, 지그비 프로토콜의 센서 네트워크 플랫폼에 적용되기 위한 요구사항 및 그에 대한 해결책을 제시한다.

I. 서론
최근 유비쿼터스 사회 실현에 대한 경제를 비롯한 각계 연구소 및 기업들의 연구가 활발해지면서, 외부 환경의 감지 및 제어 기술을 수행하는 센서 네트워크에 대한 기대가 고조되고 있다. 무선 센서 네트워크의 정보의 생성을 위한 센서, 생성된 정보를 가공할 수 있는 프로세서, 이를 검증할 수 있는 무선 송수신기 각각 소형 장치인 센서 노드로 구성되어 있는 네트워크를 말하며, 센서 노드들은 용도에 따라 필요한 정보를 수집하고 배가 스마트스테이션에 전달하는 역할을 한다. 또한, 네트워크를 스스로 구성하고, 환경 변화에 적응할 수 있는 센서 네트워크의 특성상 설치 및 활용이 용이하며, 사람의 개입 없이 실시간 정보를 얻거나 제어할 수 있다는 장점을 가지고 있어서 다가올 유비쿼터스 환경에서 중요한 역할을 할 것으로 기대되고 있다.

센서 네트워크의 활용 용도는 매우 다양하며, 체적 첨단기술 및 동제 파악 등의 긴급 목적이, 동식물의 생태하나 화재, 홍수와 같은 재해 관리 등 사람이 직접 측정, 모니터링하기 힘든 지역에 설치되어 활용될 수 있으며, 이 외에도 가정, 문의용품, 교통, 행정, 보건, 복지 등 다양한 분야에서 활용될 수 있다. 특히, 스마트 홈이나 자동차, 공공 자동화와 같이 최근 들어서는 아파트들이 표준화되는 유비쿼터스 기술 역시 센서 네트워크를 통하여 실현될 수 있다. [1]

한편, 저전력, 저속, 소형의 특성을 가진 지그비는 센서 네트워크 표준의 대안으로 고려되고 있으며, 특히 앞으로 스마트 홈 네트워크 구축에 있어 중심적인 역할을 한다고 전망된다. 그 예로, SK 화제는 정보통신부의 홈네트워크 시범사업에 지그비와 전력선통신(Power Line Communications)을 이용하여 전국 600여 가구의 수용이 가능한 지역에 지그비 네트워크를 구축한다. [2] 삼성전자의 경우, 반도체 웹에 지그비 생산관리 통합망을 시범 구축하였으며, 앞으로 모든 생산라인에 지그비 생산관리 통합망을 시범 구축하였다는 계획이다. 이처럼, 많은 연구소 및 산업체에서 2004년 표준화 발표 이후 지그비의 제품 개발 및 상용화에 박차를 가하고 있다. [3]

이처럼 지그비가 산업계 표준화라는 점은 다른 상용화를 이루어질 수 있다는 장점을 가지고 있으며, 특히 센서 네트워크의 흥 네트워크 환경에서는 다양한 장점으로 확립되지 않은 많은 네트워크 프로토콜을 대신하여 센서 네트워크의 초기 운용 및 활용에 기여할 것으로 기대된다.

본 논문에서는 지그비 프로토콜을 센서 네트워크 플랫폼에 도입하는 과정에 대해 살펴보고, 이를 위한 요구사항 및 해결책을 제시한다. 이는 II장에서는 지그비와 IEEE 802.15.4 기술을 살펴보고, III장에서는 지그비 기술을 적용한 ANTS 센서 네트워크 플랫폼에 대해 알아본다. IV장에서는 지그비 프로토콜의 포괄 과정에 대해서 설명하고, V장에서는 실험 결과를 분석한다. 마지막으로 VI장에서 결론을 내린다.

II. ZigBee and IEEE 802.15.4
ZigBee Alliance는 저전력, 저비용의 무선 네트워크 기술의 구체적인 활용과 응용을 목적으로 모토로라, Freescale, 필립스, Honeywell, BM, Siemens, TL, 미쓰시바, Ember, 삼성전자의 10개의 프로토리와 200여개의 참여 회사로 구성된 비영리 단체로서, 무선을 이용한 차세대 홈네트워크의 효율적인 구축과 적정 기간의 상호 운용성을 증진할 수 있는 산업 표준인 ZigBee Specification 1.0-4을 발표하였다. [4]

지그비는 저속, 저전력 무선인터페이스 IEEE 802.15.4 표준을 물리적 및 데이터프로토콜로 체계히 설명하고, IEEE 802.15.4는 데모로 10-100미터의 무선 통신 영역과 빠른 접속 속도를 기반으로 동작하는, 간단한 저전력 기기들의 무선 통신을 지원하도록 물리적인 데이터 프로토콜로 주기적인 완벽한 데이터 전송(WPAN)에 대한 표준이다. 이는, 국제적으로 사용 상 제약이 없는 ISM 2.4GHz 주파수 대역에서 16개, 900MHz 주파수 대역에서 10개, 868MHz 주파수 대역에서 1개의 채널을 제공하며, 각 주파수 대역에 대해서 250 Kbps, 40 Kbps, 그리고 20 Kbps의 데모 전송 속도를 가진다. 하나의 네트워크에서는 64K 개의 기기를 지원할 수 있으며, 각 기기는 64비트의 IEEE 표준 주소나 00 16비트의 지역 주소를 가질 수 있다. 실험 데이터 전송을 보장하기 위해 GTS(Guaranteed time slot)를 허용하며, CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)의 메체 액세스와 에너지 수준의 감지(Energy Detection)로 전송율 표시(Link Quality Indication)를 정의