Implementation of Effective Medical Image Display Device and Mini PACS System Using DR1000C

*Jae-Seok Hwang *Chae-Wook Lee
Dept. of Computer and Communication, Daegu University

요 약

기존의 필름 X-ray방식과 CCD방식은 공간적인 제약 및 진단 시간 동안에서 많은 단점을 가지고 있다. 본 논문에서 제안하는 DR1000C를 이용한 의료용 영상 시스템은 기존의 디지털 X-ray방식에 비해 공간 효율성이 높고 환경에 우수하다는 장점이 있다.

DR1000C을 이용한 의료용 영상 디스플레이 장치는 디지털 방식에서 인체를 전처리된 X-ray신호를 전기 신호로 바꾼 후 아날로그 디지털 컨버터 과정을 거쳐 바퀴에 저장된 후 DR1000C Controller로 보내어진다.

Controller는 입력된 영상 신호를 Computer와 SCSI(Small Computer System Interface) 통신 방식으로 인터페이스할 수 있는 LCD 컨트롤러를 구현하였다. 마지막으로 Full PACS 시스템을 설치하여 영상이 있는 3차 의료기관이 아닌 국내에 비교적 흔한 중소규모의 병원에서의 사용이 가능한 Mini PACS 시스템을 구현하였다.

1. 서 론

정보통신기술의 발전은 의료 전문과 영상 의학 분야에도 많은 변화와 발전을 이끌고 있다. 인체를 진단하는데 지금까지 많이 사용되어 온던 X선 필름의 대체장비들이 많이 사용되고 있다. 그 예로 CT(Computerized Topography), MRI(Magnetic Resonance Imaging), 초음파영상 등 이외 많은 디지털 영상(Digital Image)을 적히고 있으며, 영상의학에서 대한 기술 동향이 디지털화되는 추세에 있다. 그러나 아직까지 X-ray 장비는 70% 이상의 기존의 필름방식에 의존하고 있다. 필름방식은 환경에서 전달까지 많은 시간이 소요되므로, 이로 인해 환자가 계획에 진료를 받지 못하는 경우가 많고, 또한 필름 보관 과정에서의 부주의로 필름 손상 등의 단점이 지니고 있다. 따라서 필름의 사용보다 정리하고 보관 및 관리의 개선을 높이기 위해 영상의 전산화에 대한 필요성이 증대되고 있다[1][2].

영상의 디지털화는 필름 방산화, 정보화 하는데 매우 유익하고 여기에 영상의 대조도 증가와 경계 강조 등 여러 가지 영상처리기술의 적용함으로써 미세 응영의 가시도 개선과 정량적 측정과 분석 등에 따른 진단능력의 향상을 기대할 수 있다[3][4]. 또한 디지털 X-ray 영상 진단기는 영상 확득부의 감도를 별도로 최대화함으로써 기존 필름방식에 비해 더욱 뛰어난 X-ray 조사량으로 우수한 환경을 얻을 수 있어 신체의 피복량을 줄일 수 있고, 영상 품질을 높이지 않고 밝은 환경시각과 인체에 필요한 화학약품을 필요로 하지 않아 보다 환경에 친화적이며, 필름방식보다는 초기 작업량 분산 방식으로 CCD 카메라 (Charge-Coupled Device Camera)를 이용한 방식이 있는 데, 이 방식은 필름방식의 보관상의 문제와 시각적인 문제를 해결하였지만 X-ray 환경을 설치하는 공간이 많아 필요하다는 단점이 있다.

한편 영상의 획득, 저장, 전송, 표시등을 일원적으로 관리하는 PACS(Picture Archiving and Communications System)의 발달에 의해 획득된 영상은 실시간으로 컴퓨터에서 관리할 수 있으므로 기존의 필름방식에 비해 보다 효율적으로 병원 내 진료의 절차 향상을 가져올 수 있다.

또한 디지털 장비들은 의료 영상 시스템인 PACS에서 직접 디지털 인터페이스가 가능한 반면 일반 영상은 아날로그 영상이 디지털 영상으로 변환되어 PACS로 보내져야 한다.

이는 의료 영상 장비의 디지털화의 일부로로 고속의 전송체계를 통하여 빠른 속도로 원하는 곳으로의 영상 전송이 가능하다. 병원 내에서는 ATM(Asynchronous