9/31GHz 주파수 상향변환기 개발

정인기, **이영철, **성장욱, **안동명
*경남대학교 **(주) 세노코
*micropt@kyungnam.ac.kr *jik@genohco.com **cwheo@genohco.com **dahn@genohco.com

Development of 9GHz to 31GHz Frequency Up-Converter.

In-Ki Jeong *Young-Chul Rhee **Chang-Wook Heo **Dong-Myung Ahn
*Div. of Information & Com. Eng. Kyungnam University, **Genohco Inc.,
*micropt@kyungnam.ac.kr *mmie@kyungnam.ac.kr **cwheo@genohco.com **dahn@genohco.com

요 약
본 논문에서는 상용화된 MMIC와 하이브리드 설계기술을 이용하여 9/31GHz 위성통신용 상향 주파수 변환기를 설계 및 제작하였다. 상향주파수 변환기의 입력주파수는 8~9GHz, 출력 주파수는 30~31GHz의 주파수로 설정하였고, 설계한 상향 변환기의 구성을 쿨러터, 디코, 국부 발산 신호 제거 대역폭과 필터, GaAs PHEMT MMIC 중류기, 고조파신호 제거 커플러, 국부 발산 신호 결합기로 구성되어 있다. 설계한 상향변환기의 비율은 44dB, 3dB의 특성을 가지고 있으며, IMD는 35dBc 높은 특성이 나타났다. 본 논문에서 제작한 상향변환기는 PTP 및 PTMP용 트랜시버에 사용할 수 있으며, 넓은 대역폭과 고속의 전송속도를 가지는 QAM 및 QPSK 변조방식을 이용하는 위성 통신시스템에서도 적용할 수 있음을 보였다.

1. 서 론
1964년 최초의 정치체제 위성이 발사된 이래 위성통신분야는 최근 선진 각국들의 디지털 신호처리 기술, 부품 및 소자 기술 등과 같은 첨단 기술의 급속한 발전과 함께 다기능 및 고효율 성능을 갖는 새로운 위성시스템의 개발이 진행되고 있으며, 최근 국제적인 통신망의 균등에 따라 위성통신분야의 급속한 발전은 세계 각국은 인공위성을 보유한 세계 국가의 주요 보유자로 보유를 위해 많은 연구개발을 진행하고 있다. 위성통신은 고유의 특징인 광역성, 동보성 및 에너지의 유화성 등으로 인해 위성을 이용한 통신의 수요는 계속 증가하고 있는 추세이다. 이러한 위성의 정보통신 기술의 발전에 따라 니트리머 탈퇴를 이용하여, 대역폭 통신을 가진 통신시스템의 개발이 활발히 진행되고 있으며, 주파수 대역은 기존의 C-band, S-band에서 Ku, Ka-band으로의 변화가 이루어지고 있는 추세이다. 이러한 니트리머 탈퇴에서 고속 통신망의 정보를 전송하기 위해서는 K, Ka, Q 대역을 이용하는 LMDS, B-WLL등의 통신망으로 니트리머 불편등의 시스템의 개발이 진행되고 있다. 따라서 기존의 유선망 중심의 서비스에서 위성통신 및 근거리 고속 통신망의 서비스를 하기 위하여 주방에는 PTP(point to point), PTMP(point to multi-point)에 적용하기 위한 트랜시버와 상, 하향변환기의 연구가 진행되고 있으며, 이러한 서비스를 이용하여 기존의 융합, 무차단 방식이라도 데이터 전송으로 변환하는 초고속 정보 통신망, 광대역 위성통신시스템, 기지국간의 통신망으로 사용될 수가 있다. 또한 지상 제통재 방식의 사례로 대비하여 지상대의 통신망을 이용하는 유선 서비스의 백업용으로 사용될 수도 있다.

II. 상향변환기 구성
본 논문에서 설계한 상향변환기는 SHF대역의 입력 주파수와 점검기능을 구현하기 위한 발전기의 출력이 커플러(Coupler)를 통하여 입력되고, 온도보상 패드(Thermal-Pad)를 통하여 뿐이에 입력된다.

- 696 -