금강수계 용수수요 지표 개발
Development of Water Demand Index on Geum River Basin

뱅승진** , 황만하** , 고익환***, 이현규****
Seung Jin Maeng, Man Ha Hwang, Ick Hwan Ko, Hyeon Gyu Lee

요지
한국수자원공사에서 개발한 유역유출 모형인 RRFS의 모의를 위한 입력자료로 사용되는 생활, 공업, 농업용수 중에서 생활용수와 공업용수 수요량은 휴대나 하도에서 추계하여 수요자에게 전달되는 세계이기 때문 에 농업용수 수요량에 비해 상대적으로 신뢰성 있는 값을 산정할 수 있다고 사료된다. 그러나 RRFS의 모의운영 결과를 통해 보면 농업용수 수요량이 급증하는 매년 5월에서 용수량 값이 다수 발생되고 있다. 이러한 원인은 우수로 인한 농업용수의 급감이 미발생되었거나 우수의 물리적인 특성 변화를 반영하지 못한 농업용수의 수요량이 파내 발생될 것으로 사료된다.

따라서 본 연구에서는 생활과 물질을 제시하기 위하여 약간의 기술서는 어렵다고 판단하여 한국수자원공사 수자원연구원에서 산정한 일반의 소유형별 용수수요량을 일, 반순, 순, 원, 까지, 연별로 각각의 특성을 통합하여 분석하여 RRFS를 운영하는 한계사례에서의 적정 용수수요량 지표를 제시 하고자 한다. 용수수요 지표는 각각의 용수수요량에 대하여 현재를 기준으로 파거로 연, 정계, 원, 순, 반순, 일반화로 분석된 결과를 바탕으로 총 5단계 즉, 용수수요량이 매우 많음, 많음, 보통, 적음, 매우 적음으로 구분하여 활용할 수 있도록 하였다.

핵심용어 : 급감유의, RRFS, 강우-유출, 생활용수, 공업용수, 농업용수, 용수 지표

1. 서론
한국수자원공사에서 개발한 RRFS를 정계수위에 모의운영을 실시한 경우 RRFS의 입력자료로 활용되는 수유이용량의 값이 크고 작음에 따라 모의유출량 값의 변동이 크게 나타난다. 이를 줄여 자세히 서술하면, RRFS를 정계수위에 모의할 경우에는 유역 또는 하도를 따라 유입되는 유출량이 많아 용수이용량이 크고 작음에 따라 유출량이 변동되는 경우가 거의 없으나 정계수위에 모의할 경우에는 유역이나 하도로부터 유입되는 유출량이 작아 용수이용량의 값이 크게 되면 RRFS의 특성상 유용량으로 계산됨에 따라 모의가 직접 적으로 물수지 분석을 하여 특정기간의 모의유출량은 지속적으로 음수강으로 계산되는 경향이 있다. 이러한 결과는 물리적으로 발생할 수 없을 뿐만 아니라 이수미 물관리를 불가능하게 하는 요소로 작용하고 있다.

* 정화원-충북대학교 지역건설공학과 조교수E-mail : maeng@chungbuk.ac.kr
** 정화원-한국수자원공사 수자원연구원 수자원환경연구소 수석연구원E-mail : hwangmh@kwater.or.kr
*** 정화원-한국수자원공사 수자원연구원 수자원환경연구소 소장E-mail : ihko@kwater.or.kr
**** 정화원-충북대학교 지역건설공학과 연구원E-mail : bnx83@hanmail.net
2. 용수이용량 분석

RRFS의 모의된 임력자료로 사용되는 생활, 공업, 농업용수 중에서 생활용수와 공업용수 이용량은 매년 하루에서 수치가 이용자에게 전달되는 최체계기 때문에 농업용수 이용량에 비해 비교적 정확한 값을 산정 할 수 있다고 사료된다. 그러나 RRFS의 모의운영 결과를 분석해 보면 농업용수 이용량이 급증하는 매년 5월중에 응용량 값이 다수 발생해 있다. 이러한 원인은 강수로 인한 농업용수의 공급이 미반영 되었거나 유역의 물리적인 특성 변화를 반영하지 못한 농업용수의 이용량이 과대 산정된 것으로 사료된다.

따라서 본 연구에서는 상기의 문제점을 해결하기 위하여 해결하는 방법은 현재의 기술로는 어렵다고 판단하여 수자원연구원에서 산정한 단기의 소요비율 용수이용량을 일, 반순, 순, 일, 계절, 연별로 각각의 특성을 통계적으로 분석하여 RRFS를 운영하는 현재점검에서의 적정 용수이용량 자료를 제시하고자 한다. 용수이용 지표는 각각의 용수이용량에 대하여 현재를 기준으로 과거로 연, 계절, 일, 순, 반순, 일반적 분석된 결과를 바탕으로 총 5단계 즉, 용수이용량이 매우 많은, 많은, 보통, 적음, 매우 적음으로 구분하여 활용할 수 있도록 하였다.

용수이용량의 5단계 지표는 분석기간별 평균값을 기준으로 최고치와의 차와 저저치와의 차를 각각 5개점으로 나누어 2개간격을 합친 후 이때의 계급치를 단계별 경계값으로 한다. 이를 다시 정리하면 표 1과 같다.

| 단계 | 지표 | 표현 색
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>최고치</td>
<td>매우 많음</td>
<td>검정</td>
</tr>
<tr>
<td>최고치</td>
<td>매우 많음</td>
<td>검정</td>
</tr>
<tr>
<td>최고치</td>
<td>많음</td>
<td>칙</td>
</tr>
<tr>
<td>최고치</td>
<td>많음</td>
<td>칙</td>
</tr>
<tr>
<td>평균</td>
<td>보통</td>
<td>파랑</td>
</tr>
<tr>
<td>평균</td>
<td>적음</td>
<td>연두</td>
</tr>
<tr>
<td>최저치</td>
<td>매우 적음</td>
<td>빨강</td>
</tr>
</tbody>
</table>

표 1에서 각 단계별 표현색은 향후 RRFS의 GUI에 반영 될 때 사용되는 색을 나타낸 것이다. 본 연구에서는 급감수계 14개 소유역에 대하여 생활용수, 공업용수, 농업용수를 일, 반순, 순, 일, 계절, 연 단위로 분석하여 각각에 대한 5단계 경계값을 제시하였다. 본 분석에서 적용한 단위기간별 자료는 RRFS의 모의 연속성을 위해 각 단위기간별로 누가하여 산정하였다. 표보 예로서 대청댐 상류 7번 소유역의 5월에 대한 생활용수, 공업용수, 농업용수의 일, 반순, 순, 일, 계절, 연 단위로 분석한 결과는 표 2, 3, 4와 같다.

표 2, 3, 4에서 일별 생활용수, 공업용수 및 농업용수이용량 각각에서 5월 1일부터 5월 31일까지의 통계치와 지표경계가 동일하게 나타난다. 이것은 "수자원장기능성능기계적"의 일별 용수이용량을 일별로 나누어 산정하였기 때문이다. 반순수에서는 5월 1일부터 5월 31일까지의 통계치와 지표경계 값에서 변동이 있었으며 이는 4월 말의 용수이용량이 변연되어 나타난 것으로서 반순에서는 4월 1일부터 5월 31일까지의 통계치와 지표 경계 값에서 변동이 있었으며 이는 4월 말과 5월 초의 용수이용량이 반영되어 나타난 것이다. 일별, 계절별, 연별에서는 5월 1일부터 31일까지 일별로 통계치와 지표경계가 변동되었으며 이는 각각 4월과 5월, 3개월, 1년간의 용수이용량이 누가면서 나타난 결과이다.
표 2 생활용수 지표
(단위: CMS)

<table>
<thead>
<tr>
<th>단위</th>
<th>날짜</th>
<th>최대치</th>
<th>평균</th>
<th>최소치</th>
<th>지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>매태</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>상한</td>
</tr>
<tr>
<td>일</td>
<td>5월1일</td>
<td>1.48</td>
<td>0.95</td>
<td>0.46</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>1.48</td>
<td>0.95</td>
<td>0.46</td>
<td>1.48</td>
</tr>
<tr>
<td>반순</td>
<td>5월1일</td>
<td>7.48</td>
<td>4.73</td>
<td>2.30</td>
<td>7.48</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>7.46</td>
<td>4.73</td>
<td>2.30</td>
<td>7.46</td>
</tr>
<tr>
<td>순</td>
<td>5월1일</td>
<td>15.00</td>
<td>9.46</td>
<td>4.60</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>14.98</td>
<td>9.49</td>
<td>4.60</td>
<td>14.98</td>
</tr>
<tr>
<td>월</td>
<td>5월1일</td>
<td>45.00</td>
<td>28.37</td>
<td>13.80</td>
<td>45.00</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>44.98</td>
<td>28.37</td>
<td>13.80</td>
<td>44.98</td>
</tr>
<tr>
<td>계절</td>
<td>5월1일</td>
<td>136.46</td>
<td>86.56</td>
<td>41.64</td>
<td>136.46</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>136.40</td>
<td>86.54</td>
<td>41.65</td>
<td>136.40</td>
</tr>
<tr>
<td>년</td>
<td>5월1일</td>
<td>547.02</td>
<td>354.02</td>
<td>173.87</td>
<td>547.02</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>547.07</td>
<td>354.07</td>
<td>173.90</td>
<td>547.07</td>
</tr>
</tbody>
</table>

표 3 공업용수 지표
(단위: CMS)

<table>
<thead>
<tr>
<th>단위</th>
<th>날짜</th>
<th>최대치</th>
<th>평균</th>
<th>최소치</th>
<th>지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>매태</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>상한</td>
</tr>
<tr>
<td>일</td>
<td>5월1일</td>
<td>0.30</td>
<td>0.15</td>
<td>0.03</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>0.30</td>
<td>0.15</td>
<td>0.03</td>
<td>0.30</td>
</tr>
<tr>
<td>반순</td>
<td>5월1일</td>
<td>1.47</td>
<td>0.72</td>
<td>0.15</td>
<td>1.47</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>1.48</td>
<td>0.73</td>
<td>0.15</td>
<td>1.48</td>
</tr>
<tr>
<td>순</td>
<td>5월1일</td>
<td>2.92</td>
<td>1.44</td>
<td>0.30</td>
<td>2.92</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>2.93</td>
<td>1.45</td>
<td>0.30</td>
<td>2.93</td>
</tr>
<tr>
<td>월</td>
<td>5월1일</td>
<td>8.72</td>
<td>4.33</td>
<td>0.90</td>
<td>8.72</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>8.73</td>
<td>4.33</td>
<td>0.90</td>
<td>8.73</td>
</tr>
<tr>
<td>계절</td>
<td>5월1일</td>
<td>27.26</td>
<td>13.27</td>
<td>2.70</td>
<td>27.26</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>27.27</td>
<td>13.27</td>
<td>2.70</td>
<td>27.27</td>
</tr>
<tr>
<td>년</td>
<td>5월1일</td>
<td>110.67</td>
<td>53.75</td>
<td>10.95</td>
<td>110.67</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>110.67</td>
<td>53.76</td>
<td>10.95</td>
<td>110.67</td>
</tr>
</tbody>
</table>

표 4 농업용수 지표
(단위: CMS)

<table>
<thead>
<tr>
<th>단위</th>
<th>날짜</th>
<th>최대치</th>
<th>평균</th>
<th>최소치</th>
<th>지표</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>매태</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>상한</td>
</tr>
<tr>
<td>일</td>
<td>5월1일</td>
<td>18.46</td>
<td>7.66</td>
<td>3.88</td>
<td>18.46</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>18.46</td>
<td>7.66</td>
<td>3.88</td>
<td>18.46</td>
</tr>
<tr>
<td>반순</td>
<td>5월1일</td>
<td>23.58</td>
<td>9.78</td>
<td>4.96</td>
<td>23.58</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>40.76</td>
<td>16.91</td>
<td>8.57</td>
<td>40.76</td>
</tr>
<tr>
<td>순</td>
<td>5월1일</td>
<td>17.99</td>
<td>6.88</td>
<td>2.82</td>
<td>17.99</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>29.98</td>
<td>14.01</td>
<td>6.60</td>
<td>29.98</td>
</tr>
<tr>
<td>월</td>
<td>5월1일</td>
<td>38.40</td>
<td>17.48</td>
<td>8.45</td>
<td>38.40</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>55.58</td>
<td>24.61</td>
<td>12.23</td>
<td>55.58</td>
</tr>
<tr>
<td>계절</td>
<td>5월1일</td>
<td>38.40</td>
<td>17.59</td>
<td>8.45</td>
<td>38.40</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>56.86</td>
<td>25.25</td>
<td>12.52</td>
<td>56.86</td>
</tr>
<tr>
<td>년</td>
<td>5월1일</td>
<td>1801.67</td>
<td>722.54</td>
<td>386.83</td>
<td>1801.67</td>
</tr>
<tr>
<td></td>
<td>5월2일</td>
<td>1794.29</td>
<td>722.28</td>
<td>387.92</td>
<td>1794.20</td>
</tr>
</tbody>
</table>
RDFS의 일부 유충지의 생활, 공업, 농업용수의 인력자료를 지표로 활용하기 위해서는 활별, 계절별, 연령, 이상의 분석을 통한 지표를 활용하는 것이 바람직한 것으로 사료된다.

상기에서 언급한 바와 같이 공업용수 및 공업용수는 희석수로부터 수요가 적어 소비자로 공급되기 때문에 희석수에서 희석하는 유량이 정확히 파악할 수 있다면 분석 대상 지역의 생활수수 및 공업용수의 이용량은 근절하더라도 파악할 수 있으며 본 연구를 통해 작성된 용수체계도에 의해 생활 및 공업용수의 희석율도 파악 할 수 있을 것으로 판단된다. 그러나 농업용수의 경우 저수수 관절을 통한 희석의 급증으로 인해 정확한 농업용수의 이용량을 파악하는 것은 현실적으로 어려우며 더욱이 화기율을 신경한다는 것은 더욱 어려움 것으로 사료된다.

이러한 문제점을 극복하기 위해 과거 많은 연구가 시도되었으며 지역별 지형별 특성으로 인해 표준화된 자료를 확보하는 데에는 한계가 있었다. 본 연구에서 농업용수 이용량은 분석을 시도하는 해당 기간의 강우량과 일정한 관계가 있다고 한다하여 금강수계 소유역내로 활별 강우량과 유율의 관계를 분석하고자 연중 농업용수요가 발생하는 4월부터 9월까지의 활별 강우량과 용수사용량간의 상관관계를 파악할 수 있는 관계수를 산정하여 분석하되 그 결과의 예로서 7번 소유역의 4월부터 9월까지의 강우량과 용수사용량의 관계목사를 산정하였으며 그 결과는 다음과 같다.

<table>
<thead>
<tr>
<th>월</th>
<th>관계식</th>
<th>결정계수</th>
<th>관정</th>
</tr>
</thead>
<tbody>
<tr>
<td>4월</td>
<td>$y = 0.0036x + 0.277$</td>
<td>0.5248</td>
<td>○</td>
</tr>
<tr>
<td>5월</td>
<td>$y = -0.0052^2 + 0.1337x + 1.0015$</td>
<td>0.3237</td>
<td>○</td>
</tr>
<tr>
<td>6월</td>
<td>$y = -0.0042x^2 + 0.02x + 3.8878$</td>
<td>0.0573</td>
<td>×</td>
</tr>
<tr>
<td>7월</td>
<td>$y = -0.0005x^2 - 0.0117x + 5.5052$</td>
<td>0.1112</td>
<td>×</td>
</tr>
<tr>
<td>8월</td>
<td>$y = -0.0001x^2 + 0.0162x + 2.9297$</td>
<td>0.1248</td>
<td>×</td>
</tr>
<tr>
<td>9월</td>
<td>$y = -0.0000x^2 + 0.0097x + 0.8865$</td>
<td>0.1860</td>
<td>×</td>
</tr>
</tbody>
</table>

X: 5% 유의차가 인정

표 5와 그림 1에서 보는 바와 같이 강우량과 농업용수 이용량의 상관관계는 4월과 5월에서 5% 수준에서 유의하지 않은 것으로 나타났으며 6, 7, 8, 9월에서는 5% 수준에서 유의한 것으로 인정되었다. 그러나 자연현상의 고려하여 분석한 강우량이 증가하면 농업용수 이용량이 증가하거나 줄어들어야 하는 것이 당연할 것으로 사료된다. 이는 직접 강우에 의한 농업용수의 공급이 되기 때문인 것으로 사료된다. 따라서 통계적인 방법으로는 4월과 5월의 강우량과 농업용수 이용량의 관계가 유의하려는 하나의 신뢰성의 논리로 고려해 볼까 6월, 7월, 8월의 특성과 자연현상과 부합하는 점을 나타내었다. 결과적으로 통계적으로 유의성이 면서 자연현상과 부합하는 관계식은 나타내는 5월의 경우에는 한 강우량과 농업용수 이용량의 관계를 인정할 수 있을 것으로 판단된다. 이와 같은 현실은 7번 소유역에서 뿐만 아니라 금강수계의 나머지 소유역에서도 동일한 결과를 나타내었다.

따라서 평균수량과 농업용수 이용량의 관계에서 농업용수 이용량이 연중 5월에 집중적인 것을 알 수 있다. 이것은 5월에 강우가 많지 않은 것과 관계가 있을 것으로 사료된다. 즉 강우량은 작고 유수어용량이 많아 상관관계가 형성되는 것으로 판단되어 나머지 6월, 7월, 8월, 9월은 농업용수 이용량에 비해 안정된 강우량이 많아 집중적인 관계가 형성되지 않는 것으로 판단된다.

본 분석을 통해 RDFS에 사용된 농업용수 이용량은 연중 농업용수 이용량이 급증하는 5월의 경우 표 3.10의 자료를 활용하여 인력자료로 사용하는 것이 바람직할 것으로 사료된다. 또한 표 5는 RDFS의 유출모의식 5월의 유출량이 용수량으로 발생되는 것을 방지할 수 있는 방법이기도 한 것이다.
3. 결 론

본 연구에서는 한국수자원공사에서 개발한 유역수출 모형인 RRF의 모의를 위한 입력자료로 사용되는 생활, 공업, 농업용수 중에서 생활용수와 공업용수 수요량을 한국수자원공사 수자원연구원에서 산정한 6개
의 소규역별 수요수요량을 일, 천, 순, 월, 계절, 연별로 각각의 특성을 통계학적으로 분석하여 RRF를 운
영하는 현체시점에서의 적정 수수요량 지표를 제시하였다. 수수요지표는 각각의 수수요량에 대하여 현
체를 기준으로 과거로 연, 계절, 월, 순, 반순, 일간위로 분석한 결과를 바탕으로 총 5단계 즉, 수수요량이
매우 많음, 많음, 보통, 적음, 매우 적음으로 구분하여 활용할 수 있도록 하였다.

감 사 의 글

본 연구는 21세기 포탄터어변경개발사업단 수자원의 지속적 확보기술개발사업단의 연구비지원(과제번호:
1-6-2)에 의해 수행되었습니다.

참 고 문 헌