Phase transformation behaviors of SiO₂ doped Ge₂Sb₂Te₅ films for application in phase change random access memory Seung Wook Ryu, Jin Ho Oh, Jong Ho Lee, Cheol Seong Hwang and Hyeong Joon Kim School of Materials Science & Engineering, Seoul National University, Seoul, Korea, TEL: 82-2-880-7168, FAX: 82-2-874-7626, E-mail: tazryu78@snu.ac.kr Phase change random access memory (PCRAM) has attracted a great deal of interest, not only because it satisfies the various demands for non-volatile memory devices, but also because its fabrication process is relatively simple.¹⁻³ PCRAM uses the reversible phase change between the crystalline and amorphous state of chalcogenide materials, such as Ge₂Sb₂Te₅ (GST), brought about by joule heating. Crystalline GST has a low resistivity while amorphous GST has a high resistivity, which correspond to the "0" and "1" states in the memory devices, respectively. The improvement in the phase change characteristics of Ge₂Sb₂Te₅ (GST) films for phase change random access memory applications was investigated by doping the GST films with SiO₂ using co-sputtering at room temperature. As the sputtering power of SiO₂ increased from 0W to 150W, Crystallization temperature and the activation energy for crystallization increased from 2.1eV to 3.3eV. SiO₂ inhibited the crystallization of the amorphous GST films, which improved the stability of amorphous phase as meta-stable state. that contributed the long term stability of device. The melting point decreased with increasing concentration of SiO₂ which reduced the power consumption as well as the reset current. ^{*} This work was supported by the Ministry of Commerce, Industry and Energy (MOCIE), and the Ministry of Labor (MOLAB) through the fostering project of the Lab of Excellency.