4C5) 대기 중 수온 거동연구에 관한 고찰

Review on Studies of Fate and Transport of Atmospheric Mercury

이승록·한영지1)·서용협2)
1)서울대학교 보건대학원 환경보건학과, 2)강원대학교 환경과학과,
2)연세대학교 보건과학대학 환경공학부

1. 서 례

현재 미국과 캐나다를 비롯한 많은 선진국뿐만 아니라 중국과 같은 개발도상국에서도 수온에 대한 연구가 활발히 진행되고 있는 상황에 이는 유기 수온의 형태인 메틸수온의 높은 독성 때문이며, 이러한 메틸수온이 자연 상태에서 비교적 독성이 낮은 무기수온으로부터 생성되기 때문이다. 수온은 일반적으로 자연 및 인위적 오염원으로부터 무기수온의 형태로 대기 중으로 배출되며, 일반 대기 중에 존재하는 무기수온의 수 ng/m³ 수준의 농도는 높은 인체 및 생태 위험성을 지니고 있지 않으나, 그러나 대기 중 무기 수온은 호수가 바다로 침적으로 수생태계 내에서 주로 박테리아(황화물 박테리아)에 의해 높은 독성을 야기하는 메틸수온으로 변형되며, 이는 머리연쇄를 따라 높은 농도로 축적되어 머리사슬의 상위에 위치해 있는 생물체에게 큰 위험을 가한다. 이에 기존의 연구들에 의해서 무기 수온의 대기 침적이 생물계 내 메틸수온 총적의 중요한 유입원이라 는 것은 널리 받아들이고 있다(Landis and Keeler, 2002). 따라서 수온의 경우 대기 환경매체에서의 저류 양상을 파악하는 것이 필수적인 연구 과제로 할 수 있다. 현재 수온 연구가 활발한 미국과 캐나다의 연구 동향은 1)수온이 하나의 매체에서 다른 매체로 이동하는 기작(e.g. 대기에서 수체로, 토양에서 수체로 등)에 대한 연구와 2)수체 내에서 메틸수온의 농도를 높일 수 있는 여러 요인들(e.g. pH, 황산염 농도, UV 등)의 역할에 대한 연구가 주를 이루고 있다. 그러나 아직까지 대기 환경매체에서의 수온의 저류는 향후에 보다 많은 부분이 매우 크다.

본 논문에서는 크게 2가지에 대해서 고찰해보고자 한다. 첫째, 우리나라에서 관측한 대기 중 수온의 장거리 이동성, 둘째, 대기 중 수온의 환경 매체 내 거동에 관한 국외 연구이다.

2. 대기 중 수온(Aerospheric Mercury)

대기 중 수온은 주로 3가지 형태, 즉 원소 수온(Hg⁰), 가스성 2가 산화수온(Hg₂⁺), 그리고 입자성 2가 수온(Hg(p))으로 존재한다. 가스성 2가 산화수온은 원소수온에 비하여 반응성이 크다고 해서 중용 RGM(reactive gaseous mercury)이라고 일컬어진다. RGM는 대기자연에서 다양한 대기 농도에서도 존재하며 높은 습도 및 건식 환경, 속도에 따라 저속이 대기 중에서 제거되므로 일부 대기 중에서는 농도가 매우 낮다. 그러나 Hg⁰의 농도는 낮은 침적 속도와 상대적으로 비교적 낮은 대기 중 수온의 대부분을 차지하며(일반적으로 95% 이상) 장거리 이동성이 강하다.

지표면이나 수표면으로 침적된 수온은 재분산(resuspension or volatilization)에 의해 대기로 유입되거나 다른 환경매체로의 이동한다. 수체 내에서는 흐름상한이 흐름 속 박테리아 등에 의한 환원반응에 의해 Hg⁰로 환원되고 Hg₂⁺로 높은 중기압으로 인해 다시 대기로 배출되어진다. 혹은 수체 내에서 일부 수온은 환원된 박테리아를 통해 메틸수온으로 변형되어 생물생물체가 이동된다. 이렇게 수온 중의 각기 다른 물리·화학적 성질로 인해 수온은 종류별로 대기중 환경매체간의 이동하게 된다.

우리나라 수온 배출원 조사의 중간 결과에 의하면, 비철강 산업이 55%를 차지함으로써 가장 크다. 그 뒤로 지질폐기물 소각장(36%), 철강 산업(9%), 발전소(6%), 이동염원(3%), 시멘트(2%)의 순이다(서용철, 음료). 전세계 수온 배출량은 이화가 54%, 아프리카가 18%, 유럽이 8%, 그리고 북미가 7%를 기여하며, 중국이 가장 큰 배출량을 가진다(Pacyna et al., 2003).
3. 대기 침적 연구

미국과 캐나다의 공동 연구인 METAALICUS (Mercury Experiment To Assess Atmospheric Loading in Canada and United States)는 대기 침적이 생태계에 미치는 영향을 살펴보기 위하여, 수온의 동위원소를 습식 침적의 형태로 호수 유역(삼림 생태계 및 습지 생태계 포함)에 뿌어들여서 수온의 거동을 추적하고 있는 현재 진행형의 연구이다. 삼림의 경우 200Hg, 호수의 경우 202Hg, 그리고 습지의 경우에는 198Hg의 동위원소를 투입시켜 수온의 거동을 추적하였다(그림 1). 인위적으로 유입된 동위원소의 양은 배경 침적량 (background deposition)의 약 3배이다.

변화된 수온의 유입량에 대해 물고기 내 수온의 농도가 아직 완전히 안정화되지 않아서 대기 수온의 유입량과 물고기 내 수온 농도의 정량적 상관관계를 완벽하게 파악할 수 없다. 그러나 현재까지의 연구 결과에 의하면 1) 658개의 호수 내 수온 농도는 증가된 수온 침적량에 대해 선형적으로 따르게 증가하였으며, 2) 삼림 생태계에 침적된 수온의 이동성은 상당히 낮아서 삼림 생태계로의 수온 침적은 단기간 이나 장기의 변화를 나타낼 것이다. 또한 3) 호수의 적적성 측에서 메틸화 반응이 높아서 침적된 수온의 약 50% 이상이 헥터성 측에서 메틸수온으로 변형되었으며, 4) 특정 생태계는 다른 생태계에 비해 빠른 반응을 보인다. 중간 결과에 의해서, 대기 침적의 변화량은 물고기 내 메틸수온의 농도 변화와 대체적으로 양의 선형 관계를 가졌다(Wiener et al., 2006). 삼림 생태계에 침적된 수온의 동위원소의 질량 수치에 의하면 대부분 삼림생태계 바탕으로 유출되지 않고 토양이나 식물에 머물러 있으며, 호수 생태계의 경우 물고기내 메틸수온의 농도의 변화량이 유입된 수온의 동위원소량에 민감하게 반응하는 것으로 나타났다(그림 2). 또한 여러 호수 유역에 대한 인감성 조사를 한 결과 깊이가 깊어서 헥터성 측이 존재하고 대기 침적이 직접적으로 일어나는 호수에, 유역이 넓어서 유역으로부터 다량의 수온이 유입되는 호수에 비해 더 빠른 반응을 보여주었다.

![Fig. 1. METAALICUS의 실험 모식도(METAALICUS, 2006).](image)

![Fig. 2. 수온 동위원소 침적량에 대한 다양한 메트 내 수온 농도의 변화의, 특정 매체는 더 민감하게 반응한다.](image)
한 수온의 습식 첫째는 서울의 경우 2007년 1월에서 12월까지 21.15mg/m²-year의 높은 첨적량을 보였고 총계의 경우 2006년 8월부터 2007년 3월까지 4개월 동안 4.15mg/m²-year의 값을 나타냈다. 또한 강우량과 강우 내 수온 농도는 온도의 상관관계를 나타내었다.

삼림 생태계에서의 수온의 대기 정식은 직접적인 습식 및 건식 첨적뿐만 아니라 나무를 통과해서 첨적되는 throughfall과 나뭇잎이 지표로 벌어져 수온이 토양으로 이동하는 litterfall을 통반한다. 일반적으므로 강우내 수온 농도보다 throughfall 내 수온 농도가 더 높게 나타난다(그림 3: Choi, 2007). 토양에서 대기의 수온 휘발은 플록스 측정 방법을 이용해서 측정하는 것이 일반적이다(그림 4: Choi, 2007; Marsik et al., 2005; Fitzgerald et al., 2005). Choi(2007)의 연구에 의하면 표면에 개방 눈이 테양량에 의해 농축, 멸라 휘발되는 수온 플록스가 크게 증가하였다. 이는 극지권의 평균 수온 농도가 나타나는 대기 중 수온 농도의 급격한 증가현상 (Ferrari et al., 2005; Fitzgerald et al., 2005)과 일관된다. 지표면이나 수표면으로부터 대기로의 휘발 플록스의 일반화를 보면 테양량이 강한 낯시간에 가장 큰 이동량을 보인다(O’Driscoll et al., 2007; Gabriel et al., 2006). 이는 테양빛에 의한 환원반응이 Hg^0 생성에 큰 영향을 미친다는 것을 시사한다.

Fig. 3. 강우 내 수온 농도와 throughfall 내 수온 농도의 비교.
Fig. 4. 토양에서 대기로 휘발되는 수온의 플록스 측정 기기.

4. 수온의 장거리 이동에 대한 고찰
Hg^0의 경우 대기 중 채취시간이 약 0.5-2년 정도로 길어서 장거리 이동성이 강하다. Seigneur et al.(2004)의 연구에 의하면, 미국에서 일어나는 수온의 습식 첨적량의 21%가 중국에서 기인하는 것으로 평가되었다. Hg^0의 대기 중 농도로 평가하면 일부 지역의 경우 30%를 능가하는 양이 중국으로부터 기인된 것으로 나타났다. 우리나라는 서울 지역에서 실시간으로 측정한 Hg^0의 자료와 CO 농도 사이의 상관관계를 이용하여 장거리 이동성을 평가하였는데, 고농도 수온이 관측된 event 154개 중에 중국으로부터 기인한 event가 68개로 나타났다. 이 기간동안의 역제적 삼각포 결과 Shandong 지역, Jiangsu 지역, Hebei 지역, Nei Mongol 지역, Heilongjiang 지역, 그리고 Liaoning 지역의 6개 지역으로 발원지를 밝혀냈다. CO와 Hg 농도사이의 상관관계를 이용하여 수온의 장거리 이동성을 밝혀내는 연구는 다양하게 진행중이다(Friedli et al., 2004; Jaff et al., 2005; Weiss-Penzias et al., 2006).

참고 문헌


METAALICUS team, presentation by Reed Harris, Tetra Tech Inc., May 17, 2005.


