High T_c Pb-free (1-x)BaTiO$_3$-x(Bi$_{1/2}$Na$_{1/2}$)TiO$_3$ 세라믹의 미세구조와 PTCR 특성

Kim Chul-Min, Cho Yong-Soo, Jeong Yong-Hun, Lee Mi-Jae, Paik Jong-Hoo, Lee Woo-Young, Kim Dae-Jun

Microstructure and PTCR characteristic of high T_c lead-free (1-x)BaTiO$_3$-x(Bi$_{1/2}$Na$_{1/2}$)TiO$_3$ ceramic

Chul-Min Kim, Yong-Soo Cho, Young-Hun Jeong, Mi-Jae Lee, Jong-Hoo Paik, Woo-Young Lee and Dae-Joon Kim

Korea Institute of Ceramic ENG. & TECH, Yonsei University, and HIEL co.

Abstract: Microstructure and positive temperature coefficient of resistivity (PTCR) characteristics of 0.9BaTiO$_3$-0.1(Bi$_{1/2}$Na$_{1/2}$)TiO$_3$ [BaBiNT] ceramics doped with Nb$_2$O$_5$ were investigated in order to develop the Pb-free high Curie temperature (T_c)>160°C PTC thermistor. The BaBiNT ceramics showed a tetragonal perovskite structure, irrespective of the added amount of Nb$_2$O$_5$. They also have a homogeneous microstructure. The resistivity of BaBiNT ceramics was gradually decreased by doping Nb$_2$O$_5$, which might be due to Nb$^{5+}$ ions substituting for Ti$^{4+}$ sites. The PTCR characteristics of BaBiNT ceramics appeared when the amount of doped Nb$_2$O$_5$ exceeded 0.0025mol%. Moreover, the abrupt grain growth was observed for the 0.03mol% Nb$_2$O$_5$ added BaBiNT ceramics. It showed an especially high T_c of approximately 172°C and good PTCR characteristics of a high ρ_{max}/ρ_{min} ratio (2.96×104), a high resistivity temperature factor (11.4%/°C) along with a relatively low resistivity (3.5 ×104Ω • cm).

Key Words: positive temperature coefficient of resistivity, Curie temperature, tetragonal perovskite structure