A performance study of organic solar cells by electrode and interfacial modification
Nam Su Kang, Yong-Seok Eo, Byeong-Kwon Ju, Jae-Woong Yu, ByungDoo Chin
Center for Advanced Energy Materials, Korea Institute of Science and Technology
Display and Nanosystem Laboratory, College of Engineering, Korea University
Polymer Materials Laboratory, Department of Chemical & Molecular Engineering, Sogang University

Abstract: Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. In those annealing effects, be made insufficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell.

In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

*1) corresponding author

Keywords: 유기태양전지, Organic photovoltaics, P3HT, PCBM, PEDOT