한국전기전자재료학회 2008년도 추계학술대회 논문집

진공에서 극간 gap에 따른 절연파괴 전압 특성 파악

윤재훈, 김병철, 이승수, 임기조, 강성화
충북대학교, 충청대학교

characteristic of breakdown voltage of electrode gap in vacuum
Jae-hun Yoon, Byung-chul Kim, Sueng-su Lee, Kee-jo Lim and Seong-Hwa Kang
Chungbuk University, Chungeeong University

Abstract : SF6 widely used as insulating gas is rising as the environment problem. For decreasing this greenhouse gas, electrical breakdown characteristics of vacuum with air are studied in non-uniform field. The gap of needle to plane was 0.5mm, 0.8mm. The pressure of vacuum is range of 10^-4-10^-5 Torr. The diameter of a plane made of the stainless steel is 150mm. As a result of the experiment, the breakdown voltage is increased about electrode gap distance increased. The electrode material influenced breakdown voltage in vacuum.

Key Words : vacuum, sus electrode, breakdown voltage

1. 서 론

진공차단기는 1980년대 국내 교류계통에 적용되기 시작하여 약 20년동안 고신뢰성, 보수점검의 용이, 소형 및 경량화 등 많은 이점이 입증됨으로써 현재 국내 배전압급의 계통장치에 대부분 적용되고 있다. 최근에는 전력 계통 부하의 급증으로 인한 차단용량 증가 및 효율화로의 전원설비로서의 적용에 대한 필요성이 대두되어 소형, 고 전압화를 위한 진공 절연의 연구가 활발하게 진행되고 있다. 특히 진공이 갖는 절연파괴전압특성을 위해 다양한 전극 재료 개발이 이루어지고 있으며 전극형상에 의해 압구등작을 이용한 경우가 이뤄지고 있다. 진공 상황의 되는 경우, 업열이 급격히 감소하여 전자가 충돌할 수 있는 분자 및 압이온의 개수가 회복하여 충분히전진적이 발생하기 어렵게 된다. 이에 따라 진공의 상황에서도 파괴 전압은 급격히 증가하게 된다. 이는 파란 커버에서 잘 나타나고 있다. 파란의 벽치에 따르면, 공기의 불등방전 전압은 압구 과 극간 거리의 급에 비례하는 원수의 형태이며, 극간 거리가 일정할 경우 압력에 증가함에 따라 점리적으로 파괴전압이 증가한다. 하지만 압력이 매우 높아지면 전자의 양이온의 재결합 기회도 크게 없어 압력의 증가율만큼 파괴전압의 증가율이 나타나지 않게 된다.

본 논문에서는 진공에서 극간 gap과 전극, 면적에 따른 파괴전압특성을 진공도에 따라 분석하였다.

2. 실험

진공 상황은 모형화하기 위해 <그림 2>와 같이 스테인리스 재료의 높이 20cm, 직경 20cm 크기의 진공 및 압력용기를 제작하고, 진공펌프를 사용하였다. 병동경 전체를 모형화하기 위하여 봉대정판 전극을 사용하였다. 봉과 정판은 스테인리스 재질이며, rod의 직경은 2mm, 4mm, 6mm이며 정판의 직경은 150mm, 두께 10mm이다. 실험에 사용된 전극의 극간거리는 0.5mm, 0.8mm로 하였다. 로터리펌프를 이용하여 10^-4torr까지 진공상태를 만든 후, 10^-5torr까지 터보펌프를 이용하여 진공하였다. 인가전압은 0-100KV의 변압기 가능한 유결전변압기를 이용하였다. 실험 실 정확한 온도 및 습도, 압력을 파악하기 위하여 실험 용기에 센서를 부착하였으며, 실험 시 발생하는 압력으로 인한 손해가 기울도록 장비 각 부분을 정지하였다.

그림 1. rod-plane 전극

그림 2. 진공 채버

3. 결과 및 고찰

본 실험에서 진공도가 높아짐에 따라 선형적으로 파괴 전압이 증가하는 모습을 보였다. 또한, 전극간의 gap이 증가함에 따라 파괴전압이 상승하였으며, rod전극의 직경에 따라서는 파괴전압이 낮아졌다. <그림 3>은 rod직경이
2mm이고 균간 gap이 각각 0.5mm, 0.8mm일때 피과전압의 모습을 나타내고 있다.

![그림 3. 10^-4 torr에서 절연파괴전압 (직경 2mm)](image)

![그림 4. 10^-5 torr에서 절연파괴전압 (직경 2mm)](image)

<그림 3>, <그림 4>는 10^-4 및 10^-5 torr에서 (rod 직경 2mm) 전극 사이의 gap에 따라 측정한 절연파괴전압을 그래프로 나타낸 것이다. 각 gap일 경우 전극이 깨짐에 따라 절연파괴 전압이 상승하는 것을 확인할 수 있으며, 균간 거리가 커질수록 피과전압이 상승하는 것을 확인할 수 있다.

<그림 5>과 <그림 6>는 각각 비교해보면 전극의 직경이 커질수록 피과전압은 낮아지는 것을 확인할 수 있다. area effect에 관한 것으로 2mm일때보다 최대 전계치는 낮더맨도 절연파괴의 유발하는 유호 전계 면적이 증가함으로써 절연 내력이 저하되는 것을 확인할 수 있다.

![그림 6. 10^-5 torr에서 절연파괴전압 (직경 6mm)](image)

4. 결과 및 검토

 절연기체를 대치하여 전극을 사용할 경우 전극의 면적과 균간 gap의 선정이 가장 중요하다고 할 수 있다. 본 논문에서는 모의실험을 통하여 전극 및 균간 gap에 따른 절연파괴전압의 특성을 살펴보았다.

 첫째, 같은 gap일 경우 전공도와 균간거리가 커짐에 따라 절연파괴 전압이 증가한다.

 둘째, 전극의 면적이 증가함으로써 절연파괴전압은 낮아진다. 전극 면적이 큰 파괴전함양상은 면적효과가 기인하는 것이다. 전공도에서의 절연 설계시 최대전계치를 낮추는 것도 중요하나 최대전계의 90%정박의 유호면적을 줄이는 것 또한 매우 중요할 것으로 사료된다.

 감사의 글

 본 연구는 산업지원부의 대학전략연구센터 지원사업의 지원으로 이루어졌으며, 이에 관계자 분들께 감사드립니다.

 참고 문헌

[1] HOkubo, S. Yanabu:“feasibility study on application of high voltage and high power vacuum circuit breaker”, 20th Int. symp. on discharge and Electrical insulation in vacuum pp. 275-278, 2002
