F16CuPc를 이용한 Field Effect Transistor의 전기적 특성 연구

이호식, 박용필, 천민우
동신대학교

Electrical Properties of Field Effect Transistor using F16CuPc

Ho-Shik Lee, Young-Fil Park, Min-Woo Cheon
Dongshin Univ.

Abstract : We fabricated organic field-effect transistors (OFETs) based a fluorinated copper phthalocyanine (F16CuPc) as an active layer. And we observed the surface morphology of the F16CuPc thin film. The F16CuPc thin film thickness was 40nm, and the channel length was 50μm, channel width was 3mm. We observed the typical current-voltage (I-V) characteristics and capacitance-voltage (C-V) in F16CuPc FET and we calculated the effective mobility.

Key Words : Fluorinated copper phthalocyanine(F16CuPc), Organic Field-effect transistor(OFET), Effective mobility

1. Introduction

Organic field effect transistors (OFETs) are very attractive for low-cost and low performance applications devices, such as Organic light-emitting diode (OLED) and integrated circuit for organic circuits [1]. It has been known phthalocyanine derivate materials with high thermal and chemical stability represent one of the most promoting candidates for modern optical electronic devices such as optical recording, gas sensors, thin film transistors and solar cells [2, 3]. The F16CuPc material has a similar molecular shape and a similar crystal structure, with a hole mobility of about 0.04 cm²/Vs. The highly ordered polycrystalline thin film of the F16CuPc can be deposited on amorphous SiO₂/Si substrates under similar optimized growth conditions. Fig. 1 show the related energy levels of the highest occupied molecular orbital (HOMO) is 5.9 eV and the lowest occupied molecular orbital (LUMO) is 4.6 eV of the F16CuPc and the line was indicated the Fermi-level [2, 5].

In this paper, we fabricated the single layer F16CuPc (40nm) FET and we measured the drain current-drain voltage (I₃-V₃), capacitance-gate voltage (C-V₃) characteristics with various applied frequency and observed the AFM images of the F16CuPc thin film surface. The single and double layer FET device have the channel length and width was 50μmand 3mm, respectively. The I-V and C-V characteristics were carried out in an ambient condition by using a source-meter (Keithley type-2400) and LCR meter (Hioki type-3522-50) [4, 6, 7].

2. Experiments

Figure 1 shows a molecular structure and the device structure of the single layer F16CuPc FET. The F16CuPc FET was fabricated using the silicon substrate and the UV/ozone treatment for 30 min with oxygen gas before deposition of the active materials. The F16CuPc were deposited on to the substrate by thermal evaporation method with a deposition rate of 0.5 Å/s at 10⁻⁹ torr. The channel length (L) and width (W) were 50 mm and 3 mm, respectively.

(a) Molecular structure

(b) Device structure (single layer)

Fig. 1. Device and molecular structures of the F16CuPc FET device.
3. Results and Discussion

Figure 2 shows the AFM images of the bulk F_{16}CuPc thin film surface at room temperature and the F_{16}CuPc thin film thickness was 40 nm. From the large area (Fig 2. (a)) AFM images we could observe the very smoothly surface characteristics of the F_{16}CuPc organic thin film. Also we could guess that the F_{16}CuPc materials were layered to parallel with the substrate from the small area (Fig. 2(b)) AFM image.

(a) F_{16}CuPc surface morphology (5×5 μm²)

(b) F_{16}CuPc surface morphology (1×1 μm²)

Fig. 2. AFM images of the bulk F_{16}CuPc thin film surface at 40 nm.

Fig. 3 shows the I-V and C-V characteristics of the F_{16}CuPc single FET. The Fig. 3(a) shows the typical FET characteristics as the n-type characteristics and we were calculated the field-effect mobility of 1.5×10^{-2} cm²/Vs.

Also we measured the C-V characteristics of the F_{16}CuPc FET with various applied frequency in Fig. 3(b). We applied the varying frequency 43, 100, 1K, and 10K [Hz] to the F_{16}CuPc FET for the capacitance measurement. The applied gate voltage was increase the capacitance was also increased in the between dielectric layer and F_{16}CuPc layer in range of the 40V to -40V.

(a) Typical I-V characteristics (n-type)

(b) C-V characteristics with various applied frequency

Fig. 3. I-V and C-V characteristics of the F_{16}CuPc single layer FET.

4. Summary

We fabricated the top-contact F_{16}CuPc FET and we were measured the C-V characteristics of the F_{16}CuPc single FET.

References
