Design and Properties of a Self Generation Equipment using Current Transformer

KEK, *MATRON R&D center, **Kyungnam Univ.

Abstract: We have studied design and application about an self generation equipment for underground power transmission cable. The split CT(Current Transformer), which has the applicable underground power transmission cable, was manufactured through electromagnetic simulation of magnetic core. And manufactured the AC-DC converter that supplied stable DC power for PLC modem when current of power line has more than 150A. An self generation equipment using the CT and AC-DC converter get into operation the PLC modem consistently. As a result, the underground power transmission cable was showed the application possibility through the stable communication and network characteristics.

Key Words: Current Transformer, Self generation equipment, PLC, HV Power Cable

1. 서론

최근에는 전력 IT 사업을 통해 모든 전력 설비의 상태를 센서로 감시하고 그 정보를 통합하여 관리자에게 제공하는 전력선통신(PLC) 기반 종합 솔루션을 개발하고 있다. 그러나 지상 송/배전선의 전력선 통신 시스템에 대한 연구는 활발하게 진행되고 있으나, 지하 직적 고압선에서의 전력선 통신이 이에 어려움을 겪고 있다는 실정이다. 직하 고압선에서의 PLC 통신 시스템에 대한 연구가 진행되지 않는 것은, 주위에 잔여한 전원이 전력 가설되어 있지 않으면 통신기기의 전원을 공급할 수 없기 때문이다. 그리고 자가 발전형 전원 장치의 개발이 필요하다. 고압 전력선에 적용 가능한 자가 발전 에너지지는 변속기(Current Transformer)가 가장 적합하다고 볼 수 있는데, 포괄된 전력선에 설치해야 하므로 본원형의 변속기를 사용해야 한다. 하지만, 현재 고압 전력선에 사용 가능한 대형 변속기는 개발되지 않았으며, 특히 이에 포괄되어 있는 전력선에 적용 가능한 본원형의 설계 및 제작된 사례가 없다. 이 변속기의 출력 전원을 이용한 전원장치의 구성에 대한 연구도 진행된 사례가 없다.

따라서 본 연구에서는 통신장비 공통전원 공급자 전력선 통신장치를 개발하고자 대용량 CT와 전원장치를 제조하였으며, 이를 이용한 전력선 통신설비를 통해 직하 고압선에의 적용 가능성을 파악하고자 하였다.

2. 실험

대형 및 대용량 변속기 설계와 제조에서, 직하 154 kV 급의 고압선에 수선 ~ 수백 A의 고전원이 효율적 최대 140 mm을 침략할 수 있도록, 전자장 모의해석(2D)을 통해 고전원의 지극한 고화되지 않고 안정적인 출력을 발휘하는 자가교환을 설계하였으며, 이를 통해 내장이 150 mm의 변속기를 제작하였다. 이 변속기는 800 A : 5 A의 전류비와 1% 이내의 오차율을 가지며, 5 W 이상의 부하를 가로막도록 설정되었다.

전원장치 설계 및 제작에서, 전자장치의 입력전원이 변속기의 출력 전원인, 직하 고전원의 실제 전력 변압을 최대한 포함하도록, 신 전원장치의 입력 전원이 가능한 낮은 변압을 가로막도록 설계하고자 하였다. 변속기의 출력 교류전력은 직후 또는 승압 변압기를 이용하여 전압으로 변환하고 다이오드 및 경유저와 등을 이용하여 직후의 전압으로 변환하였다. 이와의 직후 전압은 200 Mpbs를 전송선 모두에 구동 전압(12 V, 3.3 V)이다. 설계 및 제작된 대용량 변속기 변속기와 전원장치를 통합하여 자가 변전형 전원 공급장치 구현하여 전력선 통신 실험을 실시하였으며, 통신 속도와 전력선의 변속기 변환에 대한 통신 안정성 등을 평가하였었다.

3. 결과 및 고찰

그림 1은 전자장 모의해석을 통해 제작된 자가 교환을 이용하여 제작된 대용량 변속기의 출력 특성을 나타낸 것으로, 800 A의 전력선 전류에 대해 5 A의 전류가 출력되며, 그 이후에는 경적적인 기동을 나타내었다. 변속기의 특성에 의하여 동작되는 전력선의 최대전류는 설계 기준인 800 A를 기준으로 약 25 % 상승된 1,000 A정도이며, 이 이상의 전류에 대해서는 자가교환의 형상연구를 통해 설계 가능하다. 그림 2는 변속기의 출력 전력을 입력전원으로 사용하여, 200 Mpbs를 전송선 모의의 공통전원 직류 전압이 출력전원인 AC-DC 컨버터의 출력 특성을 나타내는 것이다. 전송선 모형(Intellon chip, 200 MHz)의 구동 전압은 DC 3.3 V와 DC 12 V이며, 본 연구에서 제작된 AC-DC 컨버터는 전력선의 전력이 150 A 이상일 때부터 모듈 구동 전압이 안정적으로 출력됨을 확인할 수 있다.
상기 적재 고압선에서는 수십 kV 정도의 낮은 전류가 유입되는 경우가 있는데, 이 경우에는 전력선 모델이 구동되지 않아 통신시스템이 가동되지 않는다. 따라서 전력선의 유입전류가 수십 A 정도로 낮을 경우에도 구동가능한 전원장치 회로 또는 변환기는 성능향상 연구가 필요하다.

그림 3은 본 연구에서 제작된 자가발전 전원장치의 사진을 나타낸 것이다.

그림 4는 제작된 변환기를 대용량 비접촉식 커플러를 전력선에 설치하고 AC-DC 컨버터와 전력선 모델을 연결하여, 자가발전 전원장치 및 전력선 통신시스템을 구성한 시험 모식도이고, 표 1은 통신시험 결과를 나타낸 것이다. 모델은 그림 2의 결과와 같이 150 A 이상에서부터 구동이 가능하였고, 800 A까지 안전적으로 통신이 이루어졌으며, 전력선의 전류량 변화에 의한 통신 속도의 변화는 없었다. 전력선 모델의 소비전력은 4 W이며 저하를 포함한 전원장치의 자체 소비전력이 약 1 W 정도으로 변환기는 최소 5 W의 전력이 공급할 수 있음을 확인할 수 있었다. 이것은 본 연구에서 설계 및 제조된 자가발전 전원장치가 적재 고압선에 설치되어 통신시스템의 구동전원으로 사용될 수 있음을 나타내는 것이며, 구동가능한 전력선 전류의 범위와 최대 전원장치에서 발생되는 발열현상에 대한 추가연구가 진행된다면, 적재 고압선에서의 통신시스템용 자가발전장치로의 사용화가 가능할 것으로 판단된다.

4. 결론

변환기를 이용한 자가발전장치의 개발과 활용 가능성이 대한 본 연구결과 다음과 같은 결론을 얻었다.
1. 154 kV급 적재 고압선에 제작 가능한 통합형 대용량 변환기를 제작하였고, 전력선 전류에 대한 적성적인 출럭특성을 나타내었다.
2. 전력선의 전류가 150 A 이상부터 전력선 모델 구동용 적류 전압을 안정적으로 나타내는 AC-DC 컨버터를 제작할 수 있었다.
3. 변환기와 AC-DC 컨버터를 이용하여 구성한 자가발전 전원장치를 이용하여 전력선 모델을 구동시킬 수 있었고, 안전적인 통신시스템을 나타내어 적재 고압선으로의 활용 가능성을 나타내었다.

참고 문헌