PG4) 대중교통수단 실내의 포름알데히드(HCHO) 농도 분포특성 - 지하철 및 버스를 중심으로 -

Characteristics of HCHO Levels in interiors of Subway and Bus

이지영·이호찬·이상수·전재식·김현열
서울특별시보건환경연구원

1. 서론

현재의 도시는 도시공간의 이용률을 높이기 위하여 대규모 복합건물과 더불어 지하공간의 활용을 크게 증가시키고 있다. 또한 대도시화로 인한 대중교통의 중요성이 강조되고 있는 시점에서 서울의 지하철 이용률은 계속해서 증가하고 있는 설정이다. 서울시의 경우 1974년 지하철 1호선이 개통된 이후 현재 8호선까지 운영되어 희미 약 1,000만 약 이상 이상의 인원이 지하철을 이용하고 있으며 9호선은 현재 건설중에 있는 등 이들 지하철을 점점적으로 더욱 확대할 계획이어서 현재 도시에서 매우 중요한 대중교통수단의 하나로 자리잡고 있다. 우리나라 사람들의 일일 시간 활동양상을 조사한 결과(환경부, 2001)에 의하면, 실내의 경우 집안(13.2시간), 사무실 실내(3.7시간), 학교(1.3시간)에서 소비하고, 실외에서 125분(2.1시간), 교통수단 내 70분(1.2시간)이었다. 교통 수단을 사용하는 행태를 좀 더 구체적으로 살펴보면, 우리나라 수도권의 경우 동행수단 중 버스와 지하철은 37.76%를 차지하고 있다고(김현율, 2008) 있으며 지하철의 경우 대부분 밀폐된 지하공간이라는 특성을 가지고, 이에 의한 오염물질 촉적의 가능성이 상당히 높고 많은 시간을 지하철 내에서 보내는 이용자들이 공기오염물질에 장시간 노출시 건강상의 위해가 높아질 가능성은 대단히 높은 것으로 생각된다. 지하철의 특성에 의한 실내공기질과 관련한 연구조사가 국내외에서 활발하게 수행되었으나 전통차 내에서 실내공기질 조사는 미미한 실정이다. 따라서 본 연구에서는 서울 지역 주요 대중교통수단중 하나인 지하철 및 버스의 실내에서 실내공기질을 평가하기 위한 기초연구로서 HCHO를 중심으로 운송수단별 농도, 시간대별 및 요일별 분포특성을 등을 연구하여 향후 이러한 자료를 바탕으로 더욱 체계적 대중교통수단내 실내공기질을 개선하는데 근본적인 기초 자료를 제공하고자 수행하였다.

2. 연구 방법

본 연구는 2008년 3월 17일~6월 12일에 걸쳐 각 요일별로 서울메트로에서 운영하는 1~4호선, 도시철도공사 5~8호선 및 버스에서 HCHO를 중심으로 시간대별로 오염되는 실내공간을 기준으로 일일 출·퇴근 시간대와 비교적 이용자가 적은 시간대를 고려하여, 아침 07:30~09:30(오전 혼잡)과 저녁 18:00~20:00(오후 혼잡)을 혼잡시간(Rush Hour)으로, 10:00~12:00(오전 비혼잡)과 15:00~17:00(오후 비혼잡)을 비혼잡시간(Non-Rush Hour)으로 구분하여 총 4개 시간대로 구분하여 측정하였다. 조사대상, 측정시간 및 측정요일은 아래 표 1에 나타내었다. 측정방법은 우리나라 환경부와 미국 EPA의 공정시험법인 TO-11 방법에 따라 2,4-DNPH 유도체화법을 이용하여 측정 및 평가하였다. DNP-Coated Sili-cagel Cartridge(Supelco, USA) 흡착관을 시료채취기(SIBATA S100, JAPAN)에 연결하여 1.0L/min의 유량으로 30분 포집하였다. 채취된 시료는 빗의 노출되지 않게 명량 보관하였으며, 채취된 흡착관은 acetonitrile(J.T. Bacer, HPLC grade)를 사용하여 탈착시켰다. 분석에 사용한 HPLC(Waters 2690, USA)의 2,4-DNPH와 포름알데히드 유도체를 분석하기 위한 분석조건은 표 2와 같다.

3. 결과 및 고찰

3.1 지하철 및 버스의 HCHO 농도특성

지하철 및 버스의 실내에서 측정한 HCHO의 평균농도는 각각 24.0μg/m³ 및 52.9μg/m³를 나타내었고,
Table 1. General information concerning monitoring.

<table>
<thead>
<tr>
<th>Public transport</th>
<th>Black of track</th>
<th>Run time</th>
<th>Day</th>
<th>Sampling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>Uijeongbu ~ Incheon</td>
<td>2hr</td>
<td>Mon ~ Sat</td>
<td></td>
</tr>
<tr>
<td>Line 2</td>
<td>City hall ~ City hall</td>
<td>2hr 28min</td>
<td>Mon ~ Sun</td>
<td></td>
</tr>
<tr>
<td>Line 3</td>
<td>Daehwa ~ Suseo</td>
<td>1hr 30min</td>
<td>Mon ~ Sat</td>
<td></td>
</tr>
<tr>
<td>Subway</td>
<td>Danggogae ~ Oido</td>
<td>2hr</td>
<td>Mon ~ Sat</td>
<td>07:30 ~ 09:30</td>
</tr>
<tr>
<td>Line 4</td>
<td>Sangil-dong ~ Banghwa</td>
<td>1hr 23min</td>
<td>Mon ~ Fri</td>
<td>10:00 ~ 12:00</td>
</tr>
<tr>
<td>Line 5</td>
<td>Eungam ~ Bonghwasan</td>
<td>58min</td>
<td>Mon ~ Fri</td>
<td>13:00 ~ 17:00</td>
</tr>
<tr>
<td>Line 6</td>
<td>Jangam ~ Onsu</td>
<td>1hr 19min</td>
<td>Mon ~ Fri</td>
<td>18:00 ~ 20:00</td>
</tr>
<tr>
<td>Line 7</td>
<td>Amsa ~ Moran</td>
<td>31min</td>
<td>Mon ~ Fri</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Urban ~ bus</td>
<td>1hr 40min</td>
<td>Tue ~ Thu</td>
<td></td>
</tr>
<tr>
<td>Crosscountry</td>
<td>Ori ~ Gwanghwamun</td>
<td>1hr 20min</td>
<td>Tue ~ Thu</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. HPLC analytical conditions for formaldehyde-2,4-DNPH derivative.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Analytical condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column</td>
<td>ODS C-18</td>
</tr>
<tr>
<td>Mobile phase</td>
<td>50 : 50(acetonitrile : water)</td>
</tr>
<tr>
<td>Flow rate</td>
<td>1.0ml/min</td>
</tr>
<tr>
<td>Injection volume</td>
<td>10μl</td>
</tr>
<tr>
<td>Detector</td>
<td>UV-VIS</td>
</tr>
<tr>
<td>Wavelength</td>
<td>360nm</td>
</tr>
</tbody>
</table>

Table 3. The average concentrations of HCHO by subway and bus.

<table>
<thead>
<tr>
<th>Public transport</th>
<th>Classification</th>
<th>Mean±S.D (µg/m³)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subway</td>
<td>Line 1</td>
<td>15.9±5.5</td>
<td>6.2 ~ 31.3</td>
</tr>
<tr>
<td></td>
<td>Line 2</td>
<td>22.8±6.5</td>
<td>14.4 ~ 39.7</td>
</tr>
<tr>
<td></td>
<td>Line 3</td>
<td>29.1±7.3</td>
<td>12.8 ~ 53.4</td>
</tr>
<tr>
<td></td>
<td>Line 4</td>
<td>23.2±10.0</td>
<td>13.8 ~ 63.7</td>
</tr>
<tr>
<td></td>
<td>Line 5</td>
<td>36.7±14.8</td>
<td>12.5 ~ 58.3</td>
</tr>
<tr>
<td></td>
<td>Line 6</td>
<td>23.9±7.4</td>
<td>10.3 ~ 41.9</td>
</tr>
<tr>
<td></td>
<td>Line 7</td>
<td>16.3±4.7</td>
<td>11.3 ~ 29.8</td>
</tr>
<tr>
<td></td>
<td>Line 8</td>
<td>23.7±8.9</td>
<td>12.9 ~ 46.1</td>
</tr>
<tr>
<td>Bus</td>
<td>Urban ~ bus</td>
<td>32.6±12.1</td>
<td>14.7 ~ 50.5</td>
</tr>
<tr>
<td></td>
<td>Crosscountry</td>
<td>73.1±14.7</td>
<td>11.5 ~ 148.1</td>
</tr>
</tbody>
</table>
3.2 요일별 농도 분석

지하철과 버스에서 각 요일별로 농도변화를 조사하여 그 결과를 표 4에 나타내었다. 지하철의 경우 주중에는 화요일이 25.9μg/m³로 가장 높게 나타났고, 가장 낮은 농도는 토요일 24.7μg/m³로 나타났지만, 일요일 22.9μg/m³ 차이가 거의 없었다. 버스의 경우에는 수요일이 68.9μg/m³로 매우 높은 농도를 나타내었다. 이는 출·퇴근으로 인한 유동인구가 많은 주중과 출·퇴근이 없는 휴일에 큰 차이를 나타내지 않았음을 알 수 있었다.

Table 4. The comparison of HCHO concentrations by days(μg/m³).

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subway</td>
<td>22.9</td>
<td>25.9</td>
<td>25.5</td>
<td>24.7</td>
<td>24.4</td>
<td>22.7</td>
</tr>
<tr>
<td>Bus</td>
<td>43.3</td>
<td>68.9</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3 혼잡과 비혼잡시간대 농도 특성

지하철과 버스의 측정시간대를 혼잡과 비혼잡시간대로 구분하여 측정한 평균값을 표5에 나타내었다. 지하철 및 버스에서 HCHO의 평균농도는 유의한 차이를 나타내지 않는 것으로 나타났다(p<0.05). 노선별로는 2호선과 8호선은 혼잡과 비혼잡의 농도비율이 1.23과 1.67로 혼잡시간이 더 높은 것으로 나타났지만, 3호선과 5호선의 경우는 0.82와 0.94로 비혼잡시간이 더 높은 것으로 나타났다. 측정요일별 평균농도에서도 살펴본 것과 같이 HCHO의 농도는 이용객수의 영향보다는 객차 내 환기의 영향이 더 큰 것으로 사료되며, 적절한 환기량을 공급하기 위한 구체적인 관리대책을 마련해야 할 것으로 판단된다.

Table 5. The concentrations of rush vs non rush hour by subway and bus(μg/m³).

<table>
<thead>
<tr>
<th>Public transport</th>
<th>Mean±SD</th>
<th>Rush hour</th>
<th>Non rush hour</th>
<th>Rush/Non rush(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subway</td>
<td>Line 1</td>
<td>16.3</td>
<td>15.4</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>Line 2</td>
<td>25.4</td>
<td>20.4</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Line 3</td>
<td>24.9</td>
<td>30.5</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Line 4</td>
<td>25.3</td>
<td>21.2</td>
<td>1.19</td>
</tr>
<tr>
<td></td>
<td>Line 5</td>
<td>33.2</td>
<td>37.8</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Line 6</td>
<td>25.0</td>
<td>22.8</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Line 7</td>
<td>16.8</td>
<td>15.8</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>Line 8</td>
<td>29.7</td>
<td>17.8</td>
<td>1.67</td>
</tr>
<tr>
<td>Bus</td>
<td>Mean±SD</td>
<td>59.3±41.6</td>
<td>49.5±35.7</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>Urban-bus</td>
<td>33.4</td>
<td>30.5</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Crosscountry</td>
<td>80.9</td>
<td>65.3</td>
<td>1.24</td>
</tr>
</tbody>
</table>

참 고 문 헌
김현욱 (2008) 대중교통수단의 대기오염 실태조사(지하철, 열차), 54-55.
송희봉 (2001) 대구지하철 열차내의 공기질과 이용시민의 체감오염도 평가. 대한환경공학회지, 23(2), 337-348.