A New Frequency Controlled Half-bridge Converter with Hold-up Time Extension Circuit

Duk-You Kim, Jae-Kuk Kim, Woo-Jin Lee and Gun-Woo Moon

Division of Electrical Engineering, KAIST
Tel. 042-869-3475 Fax. 042-869-8520
Email: gwmoon@ee.kaist.ac.kr

Abstract

Hold-up time is a special requirement for the front end DC/DC converter in a server power supply. It forces the converter with the variable switching frequency to operate in a wide switching frequency range, which makes the regulation difficult and reduces the power density. In this paper a novel frequency controlled half bridge converter with the hold-up time extension circuit is proposed. During the hold-up time, the auxiliary switches are turned on, thus the resonant inductance is reduced and the voltage conversion ratio is increased. Therefore, the output capacitor of the power factor correction (PFC) circuit can be decreased, and the converter can have high power density. The proposed converter is verified by experimental results from a prototype with 700W, 400V input, and 12V output.

1. Introduction

Recently, the market of a server power supply has been increased, thus high efficiency and high power density are required for server power supplies. Also, it requires the hold-up time specification. During the hold-up time, the output voltage have to be maintained at desired value for more than 20ms after AC input line drops.[1][2]

The half-bridge (HB) converter is an attractive topology for medium-to-high power conversion because of its simplicity. There are two conventional control schemes for HB converter: symmetric control and asymmetric control.[3] The symmetric controlled HB converter has balanced voltage and current stresses of the switches and diodes. The main drawback of the symmetric control is that the primary switches operate at the hard switching condition. The asymmetrical controlled HB converter can be achieved the zero-voltage-switching (ZVS). However, because of the unbalanced voltage and current stress of the semiconductors, and magnetizing offset current, it is not suitable for wide input voltage applications.

Additionally there is the LLC resonant HB converter controlled by variable switching frequency method not pulse width modulation (PWM) method. This converter has features such as ZVS turn on of MOSFETs is achieved.[4] However, in high current application, the current stress of the secondary rectifier is very large because there is no output inductor.

In this paper, a new frequency controlled half-bridge converter with hold-up time extension circuit is proposed. The proposed converter can be controlled in variable switching frequency method like LLC resonant converter. Also the converter has an output inductor to reduce current stresses of the secondary rectifiers. Also, it has the additional two hold-up time switches. During the hold-up time, as two auxiliary switches are turned on, the frequency variation can be reduced.

2. Operational Principles

Fig. 1 shows the circuit diagram of the proposed converter. The primary side of the proposed converter consists of two primary switches, transformer, resonant capacitor, external inductor, and two auxiliary switches. The duty ratio of the primary switches is fixed to 0.5, and the switching frequency is variable. The auxiliary switches are turned off during normal operation, and turned on during hold-up time.

Fig. 2 shows the key operating waveforms of the proposed converter. The waveforms of normal operation and that of hold-up time are same, so that only normal operation is explained. The operational principle is similar to the conventional half-bridge converter except for resonance between the resonant capacitor \(C_r \) and resonant inductor \(L_m + L_{ag} + L_{ext} \). One switching cycle of the proposed converter can be divided into four modes. Since the operational principles of two half cycles are symmetric, only the half cycle is explained. A half cycle can be divided into two modes, powering mode and commutation mode, and their topological stages are shown in Fig 3. For the convenience of the analysis of the steady state operation, several assumptions are made as follows:

(a) \(Q_1, Q_2, Q_{aux1}, Q_{aux2} \) are ideal except for output capacitors, \(C_{aux1}, C_{aux2}, C_{aux, aux1}, C_{aux, aux2} \), and internal diodes.
(b) All parasitic components of the transformer except for the magnetizing inductor and the leakage inductor are neglected.
(c) The output filter inductance is large enough to be treated as a constant current source during switching period.
(d) The resonant capacitor is large enough to restrict the voltage variation within 0V to \(V_s \).
(e) Turns ratio of the transformer is \(n=N_2/N_1 \).

Mode 1 \([t_0-t_1] \) : Mode 1, powering period, begins when the commutation of secondary diode current is completed. Then \(D_1 \) is turned on. Since \(Q_1 \) is on state, \(Q_2 \) is off state, \(V_{c1+} \) is applied to \(L_m + L_{ag} + L_{ext} \). The current flowing through \(L_m \) and \(L_{ag} \) can be expressed as follow:

\[
i_{p1}(t) = C_r \frac{dv(t)}{dt} = nI_0 + i_{c1}(t)
\]

Fig. 1. The Schematic of the proposed converter

![Fig. 1. The Schematic of the proposed converter](image-url)
Mode 2 \([t_1 \to t_2]\): When \(Q_1\) is turned off, this mode begins. The ZVS of \(Q_2\) is achieved, the voltage across \(L_{m} + L_{lkg} + L_{ex}\) changes to \(-v_{cr}\). And that, the commutation of the load current from \(D_1\) to \(D_2\) occurs. During this mode, the voltage across \(L_m\) is 0V, \(-v_{cr}\) is applied to \(L_{lkg} + L_{ex}\). The slope of the current can be expressed as follows:

\[
\frac{di_m(t)}{dt} = \frac{L_m}{L_m + L_{lkg} + L_{ex}} \int_{t_0}^{t} (V_s - v_{cr}(\tau)) d\tau + i_m(t_0).
\]

When the commutation is completed, this mode ends.

3. Analysis of the Proposed Converter

3.1 Normal operation and Hold-up time

During hold-up time, the proposed converter regulates the output voltage with lower input voltage at same frequency than normal operation. Since during hold-up time, the resonant inductance changes from \(L_{lkg} + L_{ex}\) to \(L_{lkg}\), the voltage conversion ratio is increased. Fig. 4 shows the concept of the proposed circuit. When the switching frequency swings from \(F_1\) to \(F_2\), the voltage conversion of the conventional converter, which has no auxiliary switches, swings from \(G_1\) to \(G_2\). In case of the proposed converter, when the input voltage drops, the auxiliary switches are turned on, and the voltage conversion ratio can be increased to \(G_3\). From the below equation, the lower input voltage the converter can be regulated with, the smaller PFC output capacitor can be.

\[
P_{in} \text{ is input power, } \Delta t_{\text{holdup}} \text{ is hold-up time, } V_{nom} \text{ is DC/DC nominal input voltage, and } V_{min} \text{ is DC/DC minimum input voltage.}
\]

3.2 Voltage Conversion Ratio

The voltage conversion ratio of the proposed converter is given by

\[
V_o = \frac{2n}{\omega T} \left(\frac{L_m}{L_{lkg} + L_{ex}} \right) \tan \left(\frac{T_s}{4} \right)
\]

In this equation, \(T_s\) is switching period, \(L_r\) is \(L_{lkg} + L_{ex}\) at normal operation and \(L_{lkg}\) at hold-up time, \(\omega = 1 / \sqrt{C_r(L_{lkg} + L_{ex})}\), and \(T_{dead}\) is the time interval of the commutation period. With the assumption that \(v_{cr}\) is linear and primary current is \(nI_o\) as shown in Fig. 5, \(T_{dead}\) can be calculated as follows:

\[
\frac{1}{2} \Delta V_{cr} + \left(V_{cr} - \frac{1}{4C_r} nI_o T_s \right) \Delta v_{cr} + \frac{2}{C_r} n^2 T_s^2 L_r - \frac{V_{cr}}{2C_r} nI_o T_s = 0.
\]

Where \(V_{cr}\) is \(V_{s}/2\).

3.3 Turns Ratio of the Transformer

With the above equation (5), the turns ratio of the transformer can be determined.

\[
n = \frac{V_o}{2V_s} \left(\frac{L_m}{L_{lkg} + L_{ex}} \right) \tan \left(\omega T_s / 4 - T_{dead} / 2 \right)
\]
3.4 Resonant Capacitor

With the assumption that the voltage across the resonant capacitor is linear, the voltage variation of the resonant capacitor is given by

$$\Delta V_C = \frac{1}{C_r} \int i_C \, dt = \frac{1}{C_r} \frac{n I_o}{2} T_s.$$

(9)

To limit the range of the voltage across the capacitor from 0V to V_s in any condition, the resonant capacitance is determined by as follow:

$$C_r > \frac{n I_o T_s}{2 V_s \min}.$$ (10)

4. Simulation Results

In order to verify the operation of the proposed converter, a 700W converter was simulated by PSIM program. The parameters of this simulated circuit are listed in Table 1. Table 2 shows that the input voltage can be decreased with the auxiliary switches. Therefore, with the above equation (10), 921uF is used for the output capacitor of PFC circuit without auxiliary switches, however, it can be decreased to 486uF with auxiliary switches. Fig. 6 (a) shows simulated key waveforms of the proposed converter when the input voltage is 400V (normal operation), and Fig. 6 (b) shows when the input voltage is 320V (hold-up time). Due to the small magnetizing inductance the ZVS operation of the main switches is easily achieved even 10% load as shown in Fig. 7.

5. Conclusion

This paper presents the analysis and experimental results of the new frequency controlled half-bridge converter with hold-up time extension circuit. Since the duty ratio is fixed at 0.5 and magnetizing inductance is small, there is no Lm DC current offset and it has wide ZVS range. During hold-up time, the voltage gain is increased with turning on the auxiliary switches. Thus, it can operate with lower input voltage, and output capacitor of PFC circuit can be smaller. Therefore, the proposed converter is suitable for high efficiency and high power efficiency in the server power supply application.

References

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Value/Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Input Voltage</td>
<td>V_{in}</td>
<td>400V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V_o</td>
<td>12V</td>
</tr>
<tr>
<td>Max. Power Rating</td>
<td>P_{max}</td>
<td>700W</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>F_s</td>
<td>60-130kHz</td>
</tr>
<tr>
<td>Turn Ratio</td>
<td>$N_1: N_2$</td>
<td>16:1</td>
</tr>
<tr>
<td>Leakage inductance</td>
<td>L_{leak}</td>
<td>7uH</td>
</tr>
<tr>
<td>External inductance</td>
<td>L_e</td>
<td>17uH</td>
</tr>
<tr>
<td>Magnetizing inductance</td>
<td>L_m</td>
<td>300uH</td>
</tr>
<tr>
<td>Resonant Capacitance</td>
<td>C_r</td>
<td>120nF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_o</td>
<td>470uF</td>
</tr>
<tr>
<td>Output inductance</td>
<td>L_o</td>
<td>5uH</td>
</tr>
</tbody>
</table>

Table 1. Parameters of the prototype circuit

Table 2. Input voltage versus switching frequency