송전선로의 단시간 과도정격 운영기준(안) 제시

손홍관*, 김병걸*, 박인표*, 안상현*, 최종기**, 정채균**

한국전기연구원*, 한전 전력연구원 *

Abstract - This paper presented operation rules on short-term Emergency rating of transmission lines in KEPCO. And we suggested a operation grouping and its maximum conductor temperature considering facility conditions conductor lifetime, stability of connection points, conductor height above ground and clearance, in the operating and new T/L.

1. 서 론
송전선로의 송전능력은 연속허용온도에 대한 연속허용용량과 사고시에 일시적으로 과부하 운전을 하기 위한 단시간 허용용량으로 구분되는데, 단시간 허용온도는 전선의 수명에 영향을 미치므로 이에 대한 명확한 기준과 관리가 필요하다.

본 연구에서는 현재 연속허용온도 90℃, 단시간허용온도 100℃로 운영중인 정격이 향후 연속허용온도 90℃, 장시간허용온도 100℃, 단시간허용온도 120℃로 증대하여 운영됨에 따라 신설선로 및 기설선로에 대하여 도체의 수명, 접속개소의 안정성, 지상고 및 이격거리와 같은 송전선로 설비특성을 고려한 단시간 운영정격을 검토하고, 단시간 과도정격 운영기준(안)을 제시함으로서 국내 송전선로의 운영그룹핑 및 운영기준으로 활용하고자 한다.

2. 송전선로의 설비특성 검토

2.1 도체의 수명

2.1.1 도체의 수명곡선
도체의 수명평가는 소선의 인장강도가 10%저하하는 시점을 한계수명으로 평가하고 있으며, ACSR 410㎟를 구성하고 있는 알루미늄 소선 4.5mm의 가속열화실험 결과 수명곡선은 <그림 1>과 같다. 또한 도체는 어떤 조건에서도 설계수명(40년)을 유지해야 하므로 연속허용온도인 90℃에서 설계수명 40년을 초과한 5.2년이 여유수명이라고 볼 수 있고, 과부하 온도인 90℃이상의 온도에도 비례적으로 계산하여 여유수명을 <표 1>과 같이 유추할 수 있다. 즉 120℃로 0.138년 운전하고, 나머지는 90℃로 계속 운전해도 설계수명 40년 동안 도체의 인장강도 저하를 10% 이내로 유지할 수 있음을 나타낸다.

<표 1> 도체온도별 여유수명의 유추

<table>
<thead>
<tr>
<th>도체수명 (년)</th>
<th>90℃</th>
<th>100℃</th>
<th>120℃</th>
<th>130℃</th>
<th>150℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>총 수명 (a)</td>
<td>45.2</td>
<td>12.8</td>
<td>1.2</td>
<td>0.4</td>
<td>0.23</td>
</tr>
<tr>
<td>연속운전 (b)</td>
<td>40.0</td>
<td>11.28</td>
<td>1.062</td>
<td>0.34</td>
<td>0.178</td>
</tr>
<tr>
<td>여유수명 (a-b)</td>
<td>5.2</td>
<td>1.627</td>
<td>0.138</td>
<td>0.046</td>
<td>0.026</td>
</tr>
<tr>
<td>연속운전 (b)</td>
<td>0.026</td>
<td>0.230</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.2 수명측면의 과부하 허용시간

2.2 지상고 및 이격거리

2.2.1 지상고 기준에 따른 송전선로의 분류
송전선로의 지상고를 결정하는 도체온도는 1992.6월 시점으로 40℃에서 75℃로 변경되었고, 지상고 기준은 1997.10.24 개정되어 운용중이다. 이 두 가지 조건을 결합하면 지상고 및 이격거리에 따른 송전선로를 <표 3>과 같이 분류할 수 있다.

<table>
<thead>
<tr>
<th>선로구분</th>
<th>신설선로</th>
<th>기설선로</th>
</tr>
</thead>
<tbody>
<tr>
<td>그룹 - 그룹Ⅰ그룹 Ⅱ그룹Ⅲ</td>
<td>개정전</td>
<td>개정후</td>
</tr>
<tr>
<td>지상고</td>
<td>40℃</td>
<td>75℃</td>
</tr>
<tr>
<td>여유변경 후 기준</td>
<td></td>
<td></td>
</tr>
<tr>
<td>도체온도</td>
<td>75℃</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>그룹Ⅰ</th>
<th>그룹Ⅱ</th>
<th>그룹Ⅲ</th>
</tr>
</thead>
<tbody>
<tr>
<td>전압</td>
<td>154kV</td>
<td>345kV</td>
</tr>
<tr>
<td>그룹Ⅰ</td>
<td>① 0.50</td>
<td>② 1.02</td>
</tr>
<tr>
<td>그룹Ⅱ</td>
<td>① 0.80</td>
<td>② 1.02</td>
</tr>
</tbody>
</table>

2.2.2 지상고 여유 검토
한전의 지상고 설계기준(1020)에 시설물별 기준치와 가산치를 고려한 지상고 설계치를 규정하고 있으나, 이 기준은 한전의 기준으로서 국가기준인 "전기설비기술기준의 판단기준(산업자원부 공고 2006-213호)"를 만족시키지 못한다. 본 연구에서는 지상고 설계기준(1020)의 설계치와 전기설비 기준의 판단기준을 토대로 송전선로 그룹별 여유이격거리를 <표 4>와 같이 산정하였다.

<table>
<thead>
<tr>
<th>그룹Ⅰ</th>
<th>그룹Ⅱ</th>
<th>그룹Ⅲ</th>
<th>그룹Ⅳ</th>
<th>그룹Ⅴ</th>
</tr>
</thead>
<tbody>
<tr>
<td>전압</td>
<td>154kV</td>
<td>345kV</td>
<td>765kV</td>
<td></td>
</tr>
<tr>
<td>그룹Ⅰ</td>
<td>① 0.50</td>
<td>② 1.02</td>
<td>③ 2.80</td>
<td>④ 1.02</td>
</tr>
</tbody>
</table>

2.2.3 여유이격거리에 대한 허용온도 산정
상기 <표 4>의 여유이격거리에 대한 전압별, 그룹별 도체의 허용온도는 <표 5>와 같아 이를 업계설명, 그룹별 연간/탄력/간격시간/탄상시간 허용온도는 도로 표현하면 <표 6>과 같다.

<표 5> 여유이격거리별 도체 허용온도

<table>
<thead>
<tr>
<th>그룹Ⅰ</th>
<th>그룹Ⅱ</th>
<th>그룹Ⅲ</th>
</tr>
</thead>
<tbody>
<tr>
<td>전압</td>
<td>154kV</td>
<td>345kV</td>
</tr>
<tr>
<td>그룹Ⅰ</td>
<td>① 0.50</td>
<td>② 1.02</td>
</tr>
</tbody>
</table>
3. 송전선로 운영근절 단시간정격

신규로 건설되는 설전선로는 현재 적용사항을 사용하지 않고, 345kV의 안정성 측면에서 제조조건에 해당하지 않으며 도체 수명과 지상고 기준과 지상고 결정 도체온도에 따라 송전선로를 3개로 나누어 산정하였다. 따라서 송전선로 운도를 짧 시간, 장시간 및 단시간 하는가능은도는 <표 6>과 같이 정리하였다.

<table>
<thead>
<tr>
<th>분류</th>
<th>운도</th>
<th>측정사항</th>
<th>운도</th>
<th>측정사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>154kV</td>
<td>① (G/C)</td>
<td>₩/C</td>
<td>② (G/C)</td>
<td>₩/C</td>
</tr>
<tr>
<td>345kV</td>
<td>① (C/G)</td>
<td>₩/C</td>
<td>② (C/G)</td>
<td>₩/C</td>
</tr>
<tr>
<td>20kV</td>
<td>-</td>
<td>₩/C</td>
<td>-</td>
<td>₩/C</td>
</tr>
</tbody>
</table>

송전선로의 운도환온도는 해당 선로에서 가장 취약한 지점의 운도를 보며, 이 취약한 지점은 지상고, 이격거리 및 슬리브 존재 유무에 따라 다르게 나타날 수 있다.

본 논문에서는 이들 취약조건들을 결합적으로 검토하여 <표 9>와 같은 송전선로 운도환온도를 제시하고 각 운도환온도를 정리하였다.

4. 결론

1. 송전선로의 단시간정격을 결정하기 위해서는 도체의 수명, 접촉선소의 안정성, 지상고 및 이격거리와 같은 송전선로 설계조건을 고려할 필요가 있으며, 단시간 운도환온도를 검토하기 위해 도체의 수명 및 슬리브를 조건한 실물을 실시하였다.

2. 접촉선소의 안정성에 대하여 전송전선장은 설계조건과 가속 영향을있다. 이에 따라 단시간 운도환온도는 적절한 설정이 필요하다.

3. 송전선로 지상고 기준과 지상고 결정 도체온도에 따라 송전선로를 3개로 나누어 산정하였다.

4. 검토 결과들은 종합하여 <표 9> 송전선로의 분류기준 및 정격(안)을 제시하였다.

【참고 문헌】