Wrinkle / buckling 현상을 이용한 나노채널의 제작과 그 응용

정석, 문영문, 이정윤**, 한종윤**, Roger D. Kamm**
고려대*, 광운대**, KIST*, MIT**

Fabrication of nanofluidic channels with directed wrinkle/buckling patterns

Seok Chung*, Myoung-Woon Moon†, Jeong Hoon Lee‡, Jongyoon Han‡‡, Roger D. Kamm‡‡
Korea University*, Kwangwoon University**, KIST*, MIT‡‡

Abstract – Interest has grown recently in the concept of unconventional nanofabrication, the creation of nanoscale features by methods that avoid the technical hurdles and high cost of nano–lithographic processes. One of the challenges has been to reliably and inexpensively produce channels of nanometer dimension, as small as 60 nm, in the materials commonly used for soft lithography. In this manuscript, we present new approaches based on simple concepts of wrinkle and buckling patterns.

1. introduction

When planar strain in an elastic material with a stiff surface layer is relaxed, the surface forms wrinkles with a well-defined amplitude and wavelength, which are determined by the thickness and the relative modulus of the surface layer as well as the magnitude of the imposed strain. Such gradients in stiffness can be produced in a controlled manner on a flat PDMS surface or at a desired position on molded PDMS microfluidic circuits, and be easily closed by bonding to another surface, generating integration between the well-defined nanochannels and a microfluidic circuit.

Another concept to create intricate networks of fluidic channels formed from metals and ceramics is also proposed and demonstrated. The method exploits buckle delamination of a thin compressed film bonded to a substrate to form a network of closed channels. A low adhesion layer coinciding with the desired layout of the channel network is laid down on the substrate prior to deposition of the film. Once triggered, the buckle delamination propagates along the low adhesion pathways driven by release of the elastic energy stored in the film and assembling the entire channel network without external intervention. The directed buckling patterns can be used as nanofluidic channels or molds for nanochannel casting.

2. wrinkling patterns

2.1 wrinkle generation

We applied strain to a bare PDMS sheet by a home-made stretching apparatus, then subjected the sheet to plasma treatment. The plasma was ignited by normal air showing a bright pink color. Before applying the treatment, a transparency film was cut and attached to the stretched PDMS surface to mask those regions from plasma exposure where wrinkles were not desired. After plasma treatment, strain was released resulting wrinkles on exposed PDMS surface (Fig. 1). To create the homogeneous WNCs (wrinkle nanochannels) of PDMS, the wrinkled PDMS layer was bonded onto the other PDMS layer with microfluidic channels. The layers were plasma treated again for 30 seconds by the same plasma cleaner and bonded together to form nanochannels aligned with microfluidic channels. To create an inhomogeneous WNCs, with three sides of PDMS and one side of glass, we applied strain directly on the PDMS layer with microfluidic channels, covering undesired region by the trimmed transparency film and exposed it by the plasma. The wrinkled PDMS layer with microfluidic channels was then bonded to glass coverslide. Wrinkle dimension was measured by Atomic Force Microscopy and WNCs dimension was measured by Scanning Electron Microscope [1].
layer could be formed within 5 seconds near the WNCs when we applied a tangential field on the anodic side. Fluorescence intensity was biggest in the device with the smallest WNCs, rising from an initial concentration of 40 nM to 4 µM β-phycoerythrin after 10 minutes. Preconcentration of protein varied almost linearly in time for conditions 2 and 3. With the smallest wrinkles, a preconcentration factor more than 100 was achieved within 10 minutes[1].

A manuscript introduced cracks as a master to make tuneable nanofluidic channels of PDMS[3]. This promises to be a relatively easy way to make nanofluidic channels, but this approach is not suitable for many nanofluidic applications because the dimensions and location of the cracks cannot be precisely controlled. Other nanofabrication or nanolithography methods including laser ablation, e-beam lithography or focused ion beam process, are expensive and complex, representing a significant advancement of WNCs and BNCs, which are inexpensive, easy and controllable. They have now been demonstrated to be useful in some important applications, that of protein preconcentration and mixing, which requires strictly defined nanofluidic channels.

A manuscript introduced cracks as a master to make tuneable nanofluidic channels of PDMS[3]. This promises to be a relatively easy way to make nanofluidic channels, but this approach is not suitable for many nanofluidic applications because the dimensions and location of the cracks cannot be precisely controlled. Other nanofabrication or nanolithography methods including laser ablation, e-beam lithography or focused ion beam process, are expensive and complex, representing a significant advancement of WNCs and BNCs, which are inexpensive, easy and controllable. They have now been demonstrated to be useful in some important applications, that of protein preconcentration and mixing, which requires strictly defined nanofluidic channels.

<그림 3> Nanobeads of 75 nm diameter in WNCs between two microfluidic channel

[참 고 문 헌]