에어포일의 결빙에 의한 실속 및 항력 특성 변화에 관한 CFD 해석

정 성 기¹, 신 성 민¹, 명 노 신^{*2}, 조 태 환²

A CFD ANALYSIS ON EFFECTS OF ICE ACCRETIONS ON CHARACTERISTICS OF STALL AND DRAG IN AIRFOIL AERODYNAMICS

S.K. Jung,¹ S.M. Shin,¹ R.S. Myong^{*2} and T.H. Cho²

The aerodynamic performance of aircraft in icing condition can deteriorate considerably by contamination of aerodynamic and propulsive systems due to icing accretions on aircraft surfaces. A computational analysis based on the Eulerian description was performed on an airfoil to investigate effects of ice accretions on airfoil aerodynamics. A water droplet with liquid water concentration $(0.00075 kg/m^3)$ and mean volume diameter $(20 \mu m)$ was considered and applied to various angles of attack to investigate the stall angle decrease and the drag increment.

Key Words : 전산유체역학(CFD), 결빙 증식(Icing Accretion), 실속각(Stall Angle), 항력(Drag)

1. 서 론

항공기가 적운, 층운 등 상대적으로 습도가 높고 온도가 빙점 이하인 대기층이나 결빙성 비(Freezing Rain) 상공을 일 정 시간 이상 비행할 경우 곡률반경이 작은 주익 및 수평미 익, Windshield 등을 중심으로 항공기 표면에 결빙이 발생하게 된다. 이때 외부 표면에 생긴 결빙은 항공기 외부 형상에 관 한 변화를 야기하며, 일차적으로 공력 및 조종안정성에 부정 적 영향을 미치게 된다. 고정익기의 경우 최대 양력계수 및 실속각 감소, 형상항력 증가, 트림특성 변화, 추진효율 감소, 조종력 감소, 안테나 진동 등이 관찰되며, 이착륙의 경우 실 속여유 및 상승률 감소 수평미익 결빙에 의한 Pitch-Over 등 이 발생 할 수 있다. 이러한 항공기 운항 안전성에 직접적으 로 관련된 사항은 FAR 규정 등으로 인증절차를 명시하고 있 는데, 개발 항공기가 결빙 비행영역에서 안전하게 운용할 수 있음을 해석 및 시험을 통해 증명되어야 한다. 해석의 경우 날개 및 조종면 앞전, 공기 흡입구, 프로펠러, Windshield 등에 관한 분석이 우선적으로 필요하며, 액적 궤적 및 충돌 해석, 결빙 방지 시스템의 동력원 점검 등이 추가적으로 요구된다

- 2 정회원, 경상대학교 기계항공공학부 및 항공기부품기술연구소
- * Corresponding author, E-mail: myong@gnu.ac.kr

[1-6]. 이러한 결빙 현상을 수치해석 방법으로 모사하기 위해 NASA에서는 LEWICE 코드를 개발하여 결빙 현상 예측과 제 빙 및 방빙 장치 설계에 사용하고 있고, 프랑스 ONERA, 영 국의 DRA에서도 LEWICE와 유사한 TRAJICE 프로그램을 개 발하였다. 또한 캐나다에서는 CANICE라는 프로그램을 개발 하여 자국의 BOMBARIDIER사의 항공기 설계에 사용하고 있 다. 한편 국내에서는 결빙현상 연구를 위한 신규 시설 건설과 운용비로 인해 관련 연구 및 시험 인프라가 취약한 실정이다 [7,8]. 본 연구에서는 기존의 실험을 통해 구축된 참고 자료를 기반으로 CFD 수치해석 기법에 기초한 결빙현상 분석용 전 산코드를 단순 형상에 적용하여 해석하고 그 가능성을 점검 하였다.

2. 수치 해석

항공기 표면의 결빙 형상을 계산하기 위해 사전에 결빙형 상을 결정하는 인자에 대한 연구가 선행되어야 한다 결빙 생 성에 영향을 미치는 주요한 인자는 액적랑(Liquid Water Concentration; 이하 LWC), 평균체적지름(Mean Volume Diameter; 이하 MVD), 항공기 속도, 결빙 환경의 온도 및 노 출 시간이다. 액적량은 자유류의 단위 체적당 포함된 액적의 질량을 나타내며 평균체적지름은 공기 중의 액적의 직경을 나타낸다. 이러한 인자를 기반으로 결빙 증식에 의한 공력 영

¹ 학생회원, 경상대학교 기계항공공학부

제 1 발표장

Fig. 1 Flowchart of numerical simulation

향성은 Lagrangian 방식 또는 Eulerian 방식으로 분석할 수 있 다. Lagrangian 방식의 경우 계산시간이 Eulerian 방식에 비해 상당히 적게 소요되는 반면, 복잡한 삼차원 형상에 대한 결빙 해석의 경우 어려움이 존재한다. LEWICE가 Lagrangian 방식 에 기초한 대표적 결빙 계산 및 공력 영향성 분석 코드이며, 본 연구에서는 Eulerian 방식에 기초한 FENSAP-ICE 전산코드 를 적용하였다[9]. 계산시간이 많이 소요되는 반면 복잡한 형 상에 대해 적용할 수 있는 장점이 존재하여, 장기적으로 전산 코드에 의한 비행중 결빙 인증이 가능할 것으로 판단하였기 때문이다.

액적에 의한 결빙형상 예측은 우선 액적을 고려하지 않은 순수한 유동장에 대한 계산이 선행되어야 한다 그 후 액적이 물체에 충돌하는 메커니즘을 설명할 수 있는 액적 방정식의 유도 및 축적율 계산, 액적이 물체에 접촉하여 결빙이 증식되 는 결빙 증식 계산, 결빙 조건에 노출되어 있는 시간동안 반 복계산 순으로 진행된다. Fig. 1은 결빙 증식 예측과 증식에 의한 형상 변형시 비행체의 공력특성을 예측하기 위한 순서 도를 나타낸다.

본 연구에서 사용된 유동장 계산 모델로는 점성 압축성 효과를 고려한 Navier-Stokes 방정식을 이용하였으며, 난류 모 델로는 Spalart-Allmaras 모델을 사용하였다. 또한 액적궤적 계 산을 위해 아래의 액적에 대한 연속 방정식과 운동량 방정식 을 이용하였다.

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot \left(\alpha \, \overrightarrow{U_d} \right) = 0 \tag{1}$$

$$\frac{\partial (\alpha \overrightarrow{U_d})}{\partial t} + \bullet \nabla \left[\alpha \overrightarrow{U_d} \otimes \overrightarrow{U_d} \right]$$
(2)

$$=\frac{C_{D}Re_{d}}{24K}\alpha\left(\overrightarrow{U_{a}}-\overrightarrow{U_{d}}\right)+\alpha\left(1-\frac{\rho_{a}}{\rho_{w}}\right)\frac{1}{Fr^{2}}\overrightarrow{g}$$

여기서 α와 U_d는 LWC와 액적의 평균 속도를 나타낸다. 또한 항력계수는 액적의 항력을 의미하며 이는 액적을 구형 으로 고려한 경우 실험적으로 구해진 항력계수를 의미한다

$$\begin{split} C_D = & \left(\frac{24}{Re_d}\right) \! \left(1 + 0.15 Re_d^{0.687}\right), \text{ for } Re_d \leq 1300 \\ C_D = 0.4, \text{ for } Re_d > 1300 \end{split}$$

식 (2)의 우측 첫 번째 항의 K와 액적의 부력과 중력을 의미하는 두 번째 항의 Froude 수는 다음과 같다.

$$K = \frac{\rho_d d^2 V_{a,\infty}}{18L_{\infty}\mu_a}, \quad Fr = \frac{\parallel U_{a,\infty} \parallel}{\sqrt{L_{\infty}g}}$$

유동장 및 액적 궤적 계산을 위한 기본 수치기법으로 유한 요소법이 이용되었다.

2.1 축적율

축적율은 물리적으로 액적이 물체에 부착되는 비율을 의미 하며 다음과 같이 표현될 수 있다.

$$\beta_{tot} = \frac{\int \beta ds}{L_{\infty}^2} \tag{3}$$

여기서 β=-αU_d·n² 을 나타낸다. 축적율은 액적이 실제 물체에 부착되어 결빙이 증식되는 물리적 메커니즘을 설명하 는 연속 방정식과 에너지 방정식에 적용되며 결빙에 의한 형 상 변형을 구현하는데 사용된다.

2.2 결빙 증식

대기조건으로 인한 항공기의 결빙 증식은 대표적으로 Glaze 결빙과 Rime 결빙으로 대별된다. Glaze 결빙은 액적이 항공기 표면을 따라 흐르는 과정에서 결빙이 발생하는 것으 로 이를 수치해석적 방법으로 모사하기 위해 전단력과 Heat Flux가 고려된다. 그와 반면 Rime 결빙은 매우 낮은 대기 온 도에서 발생하는 것으로, 액적이 자유류를 따라 움직이는 과 정에서 물체와 충돌하는 순간 결빙됨으로 전단력과 Heat Flux 의 영향은 고려되지 않는다. 본 연구에서는 Glaze 결빙에 대

Fig. 2 Comparisons of collection efficiency on the various angle of attacks

한 수치적 계산을 수행하였으며, 액적이 물체에 부착되어 결 빙이 증식되는 과정은 다음 연속방정식과 에너지 방정식으로 표현된다.

$$\rho_f \left[\frac{\partial h_f}{\partial t} + \nabla \cdot \left(\overline{U_f} h_f \right) \right] \tag{4}$$

$$= U_{\infty} \bullet LWC \bullet \beta - m_{evop} - m_{ice}$$

$$\rho_f \left[\frac{\partial h_f c_f T_f}{\partial t} + \nabla \bullet \left(\overline{U_f} h_f c_f T_f \right) \right]$$

$$= \left[c_f T_{\infty} + \frac{\left| \overline{U_d} \right|^2}{2} \right] \times U_{\infty} \bullet LWC \bullet \beta$$

$$-0.5 (L_{evap} + L_{subl}) \dot{m_{evap}} + (L_{fusion} - c_s T) \dot{m_{ice}}$$

$$+ \sigma \epsilon \left(T_{\infty}^4 - T^4 \right) + c_h (T_f - T_{ice, rec}) + Q_{anti-icing}$$
(5)

Anti-Icing을 고려하지 않았으며, 식 (5)에서 $Q_{anti-icing}$ 항은 무시되며 $\overrightarrow{U_f}$ 와 $\overrightarrow{U_f}(x,y)$ 는 다음과 같다.

Table 1 Reference flow and glaze icing conditions

Reference Flow		Glaze Icing	
V_{∞}	95.22m/s	LWC	$0.75g/m^{3}$
P_{∞}	100kPa	MVD	$20\mu m$
T_{∞}	262.85K	T_{∞}	-15 °C
Re	2.3E + 06	Time	$2\min$.
α	$0\sim 20~^\circ$	α	$0\sim 20$ $^{\circ}$

제 1 발표장

공력해석

Fig. 3 Comparisons of iced airfoils on the various angle of attacks

$$\overline{U_f}(\vec{x},y) = \frac{1}{h_f} \int_0^{h_f} \overline{U_f}(\vec{x},y) dy$$
$$= \frac{h_f}{2\mu_f} \vec{\tau}_{a,wall}(\vec{x}) - \frac{h_f^2}{3\mu_f} \left(\frac{\partial p}{\partial x} + \rho_f \vec{g} \cdot \vec{x}\right)$$
$$\overrightarrow{U_f} = \frac{1}{2\mu_f} \vec{\tau}_{a,wall}(\vec{x}) - \frac{1}{2\mu_f}$$

$$\overrightarrow{U_f}(\overrightarrow{x}, y) = \frac{y}{\mu_f} \overrightarrow{\tau}_{a, wall}(\overrightarrow{x}) - \frac{y^2}{\mu_f} \left(\frac{\partial p}{\partial x} + \rho_f \overrightarrow{g} \cdot \overrightarrow{x} \right)$$

그 외 ρ_f, c_f, c_s, σ, ε, K_s, L_{evap}, L_{sub}, L_{fusion}는 매개변수로 서 결빙 조건에 의해 결정된다. 결빙 증식을 계산하기 위한 수치기법으로는 유한체적법이 이용되었다

3. 해석 결과

결빙시 에어포일에 대한 공력특성을 조사하기 위해 대상 모델로서 NACA0015를 선정하였으며, 결빙 조건으로 Glaze 결빙을 선정하여 수치 계산을 수행하였다. 계산을 위한 조건 은 Table 1에 제시하였으며, 계산을 위한 격자수 약 5만개, C 타입 비정렬 격자를 사용하였다 또한 받음각에 따른 공력특 성을 조사하기 위해 0도에서 20도까지 4도 간격으로 받음각 을 변화시키며 계산을 수행하였다.

Fig. 2와 Fig. 3은 받음각에 따른 축적율 및 결빙 증식 현 상을 나타낸다. 받음각에 따른 결빙 형상 변형이 축적율에서 나타난 경향과 동일하며 받음각이 증가할수록 에어포일의 앞 전에서 아랫면으로 진행되는 것을 확인 할 수 있다.

Fig. 4와 Fig. 5는 받음각에 따른 양력과 항력계수를 나타 낸다. 결빙 조건이 적용되지 않은 순수한 에어포일의 경우 약 15도에서 실속이 발생하여 양력이 감소하는 반면 결빙된 에

NACA0015

Fig. 4 Comparison of lift coefficients of clean and iced airfoils

NACA0015

Fig. 5 Comparison of drag coefficients of clean and iced airfoils

어포일의 경우 받음각 8도 이후 순수한 에어포일 대비 급격 히 양력이 감소하였다. 이는 Fig. 5의 받음각에 대한 항력의 증가와 유사한 경향을 나타내는데, Fig. 4와 Fig. 5가 동일하 게 특정 받음각 이후 유동 박리로 인한 양력 감소 및 항력 증가를 나타내었다. 특히 순수한 에어포일 대비 결빙 에어포 일의 경우 실속이 상대적으로 낮은 받음각에서 발생하며 양 력이 일정한 크기를 가지는 반면 항력은 급격히 증가하는 경 향을 나타내었다.

4.결 론

Glaze 결빙에 대한 수치 계산을 위해 우선 Clean 에어포일 주위의 유동장을 계산하였으며, 획득된 변수를 이용하여 액적 계산을 수행하였다. 또한 액적 계산을 통해 축적율과 결빙 증 식을 계산하고 변형된 형상에 대한 격자 재생성 및 ALE (Arbitrary Lagrangian Eulerian)를 시간 간격에 따라 순차적으로 수행하였다. 결빙은 받음각에 따라 에어포일의 앞전에서 아랫 면으로 진행하였으며, 해석 결과 순수한 에어포일 대비 결빙 에어포일의 실속각은 약 50% 감소하였으며 항력은 최대 300% 증가하였다. 향후 복잡한 삼차원 항공기 형상에 대한 결빙 연구를 진행 할 예정이다.

후 기

본 연구는 국토해양부 항공안전기술개발사업 "항공기 표면 발생 Icing 및 공력영향성 해석" 위탁연구과제의 지원으로 수 행되었으며 이에 감사드립니다.

참고문헌

- 2000, Aircraft icing handbook, The Civil Aviation Authority, New Zealand.
- [2] 2000, Gent, R.W. et al, *Aircraft Icing*, Phil. Trans. R. Soc. Lond. A., 358, pp. 2873-2911.
- [3] 2006, Potapczuk, M. and Wright, W., "SLC simulation capabilities with LEWICE," NASA Report.
- [4] 2006, Gent, R.W., "SLD modeling in the UK," NASA/ONERA.
- [5] 2005, Bragg, M.B. et al., "Iced-Airfoil Aerodynamics," Prog. Aerospace Sciences, Vol.41, pp.323-362.
- [6] 1998, Kind, R.J. et al., "Experimental and computational simulation of in-flight icing phenomena," *Prog. Aerospace Sciences*, Vol.34, pp.257-345.
- [7] 2008, 신훈범 외 3인, "결빙강도 예측을 위한 수치방법 연구," KSAS08-1426.
- [8] 2008, 백선우 외 2인, "2차원 날개의 서리얼음 형상예측,"
 KSAS08-2111.
- [9] NTI Solutions User Manual, Newmerical Technologies Int.