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A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic 
simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid 
three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in 
complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has 
been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used 
with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the 
effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and 
assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the 
present paper. Some numerical tests have been performed with the implemented scheme and the comparison results 
between the second-order and first-order upwind schemes are introduced in the present paper. The comparison 
results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed 
the reduced numerical diffusion with the second order scheme.
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Nomenclature
pc Specific heat

dx Distance vector
e Internal energy
E Energy diffusion term

         



F Interfacial drag force term
g Gravity acceleration
h Enthalpy
H Interfacial heat transfer coefficient
j Superficial velocity
k Conductivity
M Interfacial momentum transfer term
m Mass flow rate

fN Number of faces in a cell
pn Number of nodes on a face

P Pressure
Q Interfacial heat transfer term
q Wall heat transfer term
"q Wall heat flux

S Entrainment or De-entrainment rate
t Time
T Temperature
u Velocity
V Volume
W Width
X Non-condensable quality

Greek Letter

α Volume fraction
χ Interface drag factor
Γ Vapor generation rate
η  Fraction of vapor generated from droplets
Φ Slope limiter
θ Convective quantity
ρ Density
τ Shear stress
ψ Volume flow
Ω Total mass transfer rate

Subscripts

d Droplet
DE De-entrainment
E Entrainment
g Gas
i Interface
in Inlet
k dorlg,=

l Liquid
m Mixture
m Mean
n Non-condensable
n Node
sat Saturation
v Vapor
w Wall
wall Wall

1. INTRODUCTION

The need for a multi-dimensional analysis for the 
thermal hydraulic phenomena in a component of a nuclear 
reactor is increasing with the advanced designs of a 
reactor and a safety system. In the case of APR1400, 
Korean advanced power reactor, multi-dimensional 
phenomena inside the reactor vessel during a postulated 
loss of coolant accident has become major technical issues 
for consideration [1]. These include the ECC bypass of a 
DVI (Direct Vessel Injection) system and a downcomer 
boiling during the reflood phase of a LBLOCA. These 
phenomena are characterized by the combination of a 
boiling due to a downcomer wall heat transfer, 
multi-dimensional counter-current flow, lateral motion of 
bubbles and droplets, flow regime change, bulk 
condensation, phase separation, etc. The resolution of these 
issues was addressed through experiments, and not by 
state-of-the-art system codes or CFD codes. Motivated by 
these issues, the development of a numerical solver for a 
component analysis code, named CUPID, is in progress at 
Korea Atomic Energy Research Institute (KAERI). The 
objective of the development is to support a resolution of 
the thermal hydraulic issues regarding the transient 
multi-dimensional two-phase flow phenomena which can 
arise in a component of an advanced reactor. 

The important features of the CUPID code are listed 
below. 

- Governing equations: three-dimensional, two-fluid, 
three-field model

- Transient flows
- Laminar and turbulent flows
- Porous media and open media
- Turbulence models: algebraic model and standard k-

Model
- Fluid solver algorithms: semi-implicit, SMAC and 
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- Unstructured mesh
In our previous papers [2,3,4], the numerical schemes 

for the two-fluid model were described and various 
conceptual problems have been solved for the verification 
of the solvers. The first-order upwind interpolation scheme, 
however, had been employed for our previous numerical 
tests. In order to reduce the numerical diffusion associated 
with the first-order upwind scheme, a second-order upwind 
scheme for two-phase flows is introduced. The present 
paper describes the second-order scheme and the 
suppressed numerical diffusion of the calculation results.

2. GOVERNING EQUATIONS OF THE TWO-FLUID  

MODEL

The present numerical solver needs to have an 
applicability to both porous medium and open medium to 
simulate the multi-dimensional two phase flow behavior in 
a reactor component. Basically, the present numerical 
solver adopted the two-fluid three-field model for 
two-phase flows. But for the open medium, the solver 
adopts the two-field model rather than the three-field 
model since it is hard to define the entrainment rate and 
deposition rate in open medium. The three-field model can 
be changed to a two-field model easily by fixing the 
values of the entrainment rate and the deposition rate to 
zero.

In the two-fluid three-field model, the mass, energy, 
and momentum equations for each field are established 
separately and, then, they are linked by the interfacial 
mass, energy, and momentum transfer models.

The continuity equation for k-field is
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The non-condensable gases when present are contained 
in the vapor field, and these are assumed to move with 

the same velocity and have the same temperature as the 
vapor phase. Thus, the continuity equation for the total 
non-condensable component is given as
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where the non-condensable quality nX  is defined as the 
ratio of the non-condensable gas mass to the total gaseous 
phase mass.

The momentum equation for the k-field is
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where ikM  is the interfacial momentum transfer term.
In the energy equations, it is assumed that the 

continuous liquid and entrained liquid are in a thermal 
equilibrium, i.e., ld TT = . This is a good approximation for 
most of the applications of interest. As a result, two 
energy equations are used, i.e., one for the gas field and 
one for the combined field of the continuous and 
entrained liquids.
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where D
kE  includes the conduction, turbulent energy 

source, and viscous dissipation that are represented in 
terms of a diffusion.

The interfacial energy transfer terms, igQ  and ilQ , in 
Eqs. (7) and (8) are modeled as
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Because the sum of igQ  and ilQ  is zero, the volumetric 
vapor generation rate is represented as
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The term glQ  in Eqs. (7) and (8) is the sensible heat 
transfer rate per unit volume at the non-condensable 
gas-liquid interface:

( ) )(/ lgiglsgl TTAHPPPQ −⋅−= , (12)

The interfacial momentum transfer term, ikM  in Eq. 
(6), includes the interfacial drag, the momentum exchange 
due to the interface and wall mass transfer and various 
non-drag forces such as lift force, virtual mass force etc. 
For simplicity, however, the non-drag forces are omitted 
hereinafter and, then ikM  is written as:

giwallgivgdglig uuFFM Γ+Γ+−−= , (13)
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The interface velocities, kiu , are needed to obtain the 
interfacial momentum transfer due to the interface mass 
transfer. These are determined using a donor formulation 
concept.

The independent state variables P , kα , ke  and nX

and phasic velocities ku  are the unknowns of the present 
solver and the dependent variables such as the phasic 
density, phasic temperature, the saturation temperature, the 
saturation pressure are expressed as functions of the 
independent state variables from the equations of the states 
(EOS).

The present numerical solver adopted the semi-implicit 
numerical scheme and the detailed procedure of the 
numerical algorithm was reported in our previous paper by 
Ref. 2.

3. SECOND ORDER UPWIND METHOD FOR THE 

TWO-PHASE FLOW SOLVER

In our previous studies, the first-order upwind scheme 
and the second-order central difference scheme for the 
convective terms of the governing equations had been used 
for the numerical tests. So as to stabilize a numerical 
solution and assure a high numerical accuracy, the 
second-order upwind scheme was implemented into the 
CUPID code in the present paper. The convective terms in 
the current numerical solver and their discretized forms 
are:

for a continuity equation for k-phase,
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for a continuity equation for non-condensable gas,
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for a energy equation for non-condensable gas,
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for a momentum equation for k-phase, the following 
non-conservative form was used.
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Therefore, it has two convective terms:
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where fkfk Su )()( ⋅=ψ : volume flow rate. In general, the 
convective terms can be expressed by



Fig. 2 Frink’s Pseudo-Laplacian weighting method

Fig. 1 Face value evaluation for upwind scheme

( ) ( )
f

fkfA ψθ , (22)

where ( ) fθ : convective quantity. As indicated in Fig. 1, 
the convective quantities ( ) fθ  are evaluated in the 
first-order upwind scheme as
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In the case of the second-order upwind scheme, they are 
calculated by
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where kfkf xxdx −= ,
Φ : slope limiter.
In order to obtain θ∇  at the center of a cell, Frink’s 
restructuring method [5] was applied which is based on 
the Green-Gauss method.
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n

k
knf n
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,θθ : a cell face value calculated by the 

interpolation of the face node values, pn : the number of 
nodes on the face.

The node values of a face nθ  were determined using 
the pseudo-Laplacian weighting method [6] as shown in 
Fig. 2.

In a two-phase flow, there might be a discontinuity of 

convective variables between two cells, which can cause 
unphysical oscillatory numerical results. To suppress the 
oscillation and to assure the stability of the interpolation 
scheme, the slope limiter ( Φ ) proposed by Barth and 
Jesperson [7] was applied in the following forms,
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if
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4. VERIFICATION OF THE SECOND ORDER 

UPWIND METHOD

To evaluate the performance of the present approach, 
numerical tests were performed first for both single-phase 
and two-phase flows: a single-phase laminar flow with a 
constant wall heat flux and a phase separation respectively.

Fig. 3 shows the two-dimensional computational domain 
and boundary conditions of the single-phase laminar flow 
example problem. For a simplicity of the analytical 
solution, the fluid properties such as the viscosity, density, 
heat conductivity were assumed to be constants, 0.1 
Ns/m2, 1000 kg/m3, 3000 W/mK respectively. In this case, 
the analytical solution of the fully developed temperature 
profile is [8]
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0 .1 m Outle t: P=0.1013  M Pa

Co nsta nt He at Flux 
Q =50 kW /m 2
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T in=30 0 K Re=100

Fig. 3 Computational domain and boundary conditions of the 
laminar flow calculation Fig. 4 Temperature distribution comparison results : exact solution 

vs calculation results
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The calculations were performed with relatively coarse 
(5×50) and fine (10×50) meshes applying both first-order 
and second-order schemes to each mesh so that total four 
calculation cases were selected for the single-phase flow 
numerical test.

Fig. 4. shows the temperature comparison results 
between the analytical solution and the calculation results 
of the four cases when the flow was fully developed. The 
comparison results showed that the present solver can 
capture the exact solution and more accurate results can 
be obtained with the second-order scheme in the same 
mesh.

As the second test for the verification of the 
second-order scheme, a phase separation problem was 
simulated. Fig. 5. shows the two-dimensional computational 
domain and the initial conditions of the problem. Initially, 
the cavity was filled with a two-phase mixture of which 
void fraction was 0.5. As the calculation started, a phase 
separation was induced by a density difference so that two 
steep void waves traveled from the top and bottom ends 
simultaneously as shown in Fig. 6-(a). The two void 
waves met at the middle of a section, which resulted in 

the formation of a sharp interface after the phase 
separation was complete (Fig. 6-(b)). As shown in Fig. 6, 
this phase separation process was predicted qualitatively 
well by the present solver.

Neglecting the momentum flux terms and virtual mass 
forces, we can obtain the analytical solutions of the void 
propagation velocities as below[9],

i
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where ggllm ραραρ += .

For the simplicity of the analytical solution, the following 
simple algebraic model of the interfacial drag model was 
used instead of Eq.(21) and (22).

lgi ααχ ⋅= 40000 , (29)

As with the previous example of the laminar flow, four 
calculation cases were performed with the first-order and 
second-order schemes in relatively coarse (20×20) and fine 
(40×40) meshes. The numbers of meshes in this 
calculation are not sufficient to capture the sharp void 
fraction gradient along the channel elevation. But we used 
the coarse meshes to show the decreased numerical 
diffusion more apparently.
In Fig. 7, the analytical solution was compared with the 



Fig. 5 Computational domain and initial conditions of the phase 
separation calculation

Fig. 7 Void fraction comparison results : exact solution vs 
calculation results

(a) t=2.0s

(b) t=5.0s

Fig. 6 Phase separation calculation results : void fraction

four calculation results. As can be seen in the comparison 
result, the void wave propagation was predicted well by 
the present solver even though the void fraction profiles 
were smeared due to a numerical diffusion. Moreover the 
comparison results showed the reduced numerical diffusion 
with the second order scheme as expected.

From these two examples of the calculations, it was 
verified that the second-order upwind interpolation scheme 
was implemented appropriately and the numerical diffusion 
can be reduced with it. Moreover, it was shown that the 
Barth limiter, originally proposed for a single phase 
compressible flow, is applicable for a two-phase flow 
analysis.

4. CONCLUSION

A component-scale two-phase analysis code, CUPID, 
has been developed for a realistic simulation of transient 
two-phase flows in light water nuclear reactor components. 
In the present paper, the recent improvements to the 
CUPID code were introduced, particularly, the 
implementation of the second-order upwind scheme for the 
convection terms. In order to verify the  implemented 
features, some verification tests were performed. The 
numerical tests using the second-order upwind scheme 
indicated a reduced numerical diffusion even in a 
two-phase flow condition which contains a sharp interface. 
During the calculation for the phase separation, the 
unstable oscillatory behavior of a void wave was not 
observed, which means the applied slope limiter worked 
appropriately.

In the future, various validation works will be carried 
out against a wide range of multi-dimensional two-phase 
flows for the quantitative assessments of the numerical 
solver.
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