수치 시뮬레이션에 의한 솔더 접합부의 역학적 특성에 관한 연구

A Study on the Mechanical Behavior of Solder Joint by Numerical Analysis

 * 권용혁 1 ,방희선 2 , 박세민 3 , 이창우 4 , $^\#$ 방한서 5

*Y. H. Kwon¹, H. S. Bang², S. M. Park³, C. W. Lee⁴, [#]H. S. Bang(hsbang@chosun.ac.kr)⁵
¹ 조선대학교 대학원 선박해양공학과, ²조선대학교 선박해양공학과, ³조선대학교 대학원 선박해양공학과, ⁴한국생산기술연구원 용접접합기술지원센터, ⁵조선대학교 선박해양공학과

Key words: MCP, flip chip bonding, solder joint, residual stress

1. 서론

반도체 웨이퍼를 다층으로 적층 시키는 MCP(Multi Chip Package)와 같은 기술의 발전으로 인하여 반도체 패키지는 날로고밀도, 경박단소, 미세피치화 되어가고 있다. 이러한 3D 패키징에서 최근 관통 실리콘 비아(Through Silicon Via; TSV)를 사용하여웨이퍼를 적층 시키는 방법의 연구가 활발하게 연구되어솔더 범프만으로 웨이퍼를 적층 시킬 수 있게 되었다. 하지만이러한 솔더 접합부에는 공정상 또는 사용상 국부적인 열이가해짐에 따라 솔더와 범프의 재료의 열팽창 및 수축이 일어나게되고 주위의 구속력에 의해 구속되어 접합부에 응력이 잔류하게된다. 이와같은 잔류응력은 솔더 접합부의 균열의 원인이 되거나신뢰성에 악영향을 미치게 되므로 본 연구에서는 Cu pillar위에솔더를 증착시켜 인접 솔더끼리 브리징 현상 발생을 개선시킨반도체 패키지 모델의 유한요소해석을 통해 역학적인 관점에서의 솔더 접합부 신뢰성을 검증해 보고자 한다.

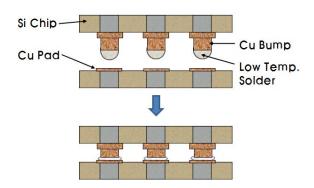


Fig. 1 Flip chip bonding process using solder bump

2. 수치해석 모델 및 방법

솔더 접합부의 역학적 특성을 파악하기 위한 선행연구로 2차원 열전도 이론을 정식화하여 개발한 열전도 프로그램을 이용하여 열분포 및 열특성을 해석하였다. 또한 도출한 열이력을 열하중으로 하는 솔더접합부 잔류응력 및 변형해석을 위한 열탄소성 해석 프로그램을 개발하였으며 열탄소성 해석을 위하여 식 (1)에보인 것과 같이 전변형률(ϵ)에 탄성변형률(ϵ^e)과 소성변형률(ϵ^p) 그리고 열응력에 의한 변형률(ϵ^t)이 포함되도록 하였다.

$$\epsilon = \epsilon^e + \epsilon^p + \epsilon^t \tag{1}$$

솔더 접합부의 형상 및 치수는 Fig. 2에 나타낸바와 같이 cap 범프 높이 10μ , pillar 범프의 높이 25μ 이고 두 범프의 폭은 25μ 이다. 또한, 요소분할은 4절점 아이소파라메트릭요소를 도입하여 Fig.3와 같이 총 절점수 4625개, 총 요소수 4310개로 분할하였으며, 특히 Cu와 Sn의 계면부를 $0.01\times0.5\mu$ 로 fine mesh 하였다.

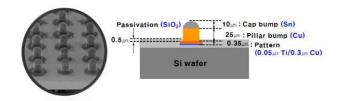


Fig. 2 Configuration of a solder joint

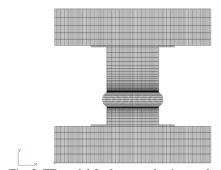
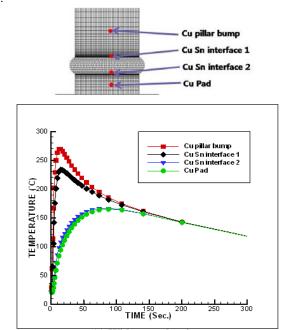



Fig. 3 FE model for heat conduction analysis

3. 해석결과

솔더 접합부의 열탄소성 해석을 위한 선행연구 열전도 해석시실제 공정을 반영하기 위하여 플립칩 본더 장비의 특성을 파악하여 플립칩 본더 장비의 약 70℃ 예열까지 고려하였다. 또한 예열을 하지 않는 경우와 예열을 한 경우의 열특성을 비교해 본 결과를 Fig. 4에 나타내었다. 또한 도출한 열이력을 열하중으로 하여열탄소성 해석을 실시하여 솔더 접합부의 잔류응력을 평가하여보았다.

(a) Without preheating

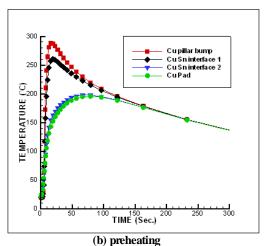
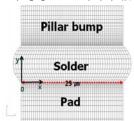
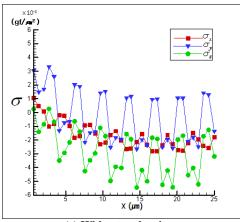




Fig. 4 Thermal history of a solder joint

먼저 열해석 결과 예열의 경우 동시간대 접합부에서 최고 약 25~30℃의 온도 상승효과를 보였다. 그리고 Fig. 5는 솔더 접합부의 Cu와 Sn의 계면을 따라 잔류응력의 양상을 나타낸 결과 예열을 할 때 예열을 하지 않을 경우 보다 높은 잔류응력 값을 보였지만 서로의 양상은 큰 차이가 없는 것으로 나타났다.

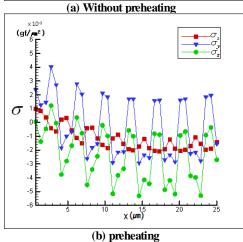


Fig. 5 Residual stress of a solder joint's interface

Fig. 6은 솔더 접합부의 수직 방향을 따라 잔류응력을 도시한

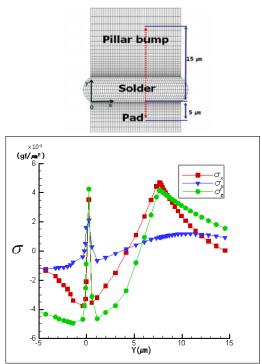


Fig. 6 Residual stress of a solder joint with preheating

결과이다. 예상대로 솔더와 필러범프, 솔더와 패드 사이의 계면부에서 서로 다른 물성으로 인한 급격한 잔류응력의 증가를 관찰할 수 있었으며 솔더와 필러범프의 계면부의 잔류응력이 솔더와 패드 사이의 계면부 보다 높은 양상을 보여주었다. 이는 패드와 필라범프의 기하학적 제원의 차이 때문일 것으로 사료된다.

4. 결론

1. 솔더 접합부의 열탄소성 해석을 위한 선행연구 열전도 해석시 실제 공정을 반영하기 위하여 플립칩 본더 장비의 특성을 파악하였고 예열까지 고려한 결과 예열의 경우 동 시간대 접합부에서 최고 약 25~30℃의 온도 상승효과를 보였으나 서로의 양상은 큰 차이가 없었다.

2. 예열을 할 때 예열을 하지 않을 경우 보다 높은 잔류응력 값을 보였지만 서로의 양상은 큰 차이가 없는 것으로 나타났다.

3. 솔더와 필러범프의 계면부의 잔류응력이 솔더와 패드 사이의 계면부 보다 높은 양상을 보여주었으며 이는 패드와 필라범프의 기하학적 제원의 차이 때문 일 것으로 사료된다.

후기

본 연구는 협동연구사업 '차세대 반도체 MCP 핵심기술 개발' 의 지원을 받아 수행 하였습니다.

참고문헌

- H.S. bang. "Study on The Mechanical Behavior of Welded part in thick Plate -Three-dimensional Thermal Elasto-Plastic Analysis Base on Finite Element Method." Journal of the Korean Welding Society, Vol.10,No.4,37-43,1992.
- 2. 김정한,이창우,김준기,김철희,이종현."전자부품의 마이크 로 패키징 공정관련 기초이론과 실무".137-139.2007.
- 3. Chang-Bae Lee, Chang-Youl Lee, Chang-Chae Shur, Seung-Boo Jung."The Growth Kinetics of Intermetallic Compound Layer in Lead-Free Solder joints.", Journal of KWS., Vol.20, No3, 272-279,2002