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1. Introduction 

Many mobile vehicles such as wheels for mobile vehicles, 
propellers for boats, helicopter or underwater vehicle, 
robotic joint, and machine tools require orientation control 
of the rotating shaft.  Existing designs are typically single-
axis devices; thus, orientation control of their rotating shafts 
must be manipulated by an external mechanism. These 
multi-axe spinners are generally bulky, slow in dynamic 
response, and lack of dexterity in negotiating the orientation 
of the rotating shaft. This paper presents a spherical wheel 
motor (SWM); an alternative design built upon the concept 
of a VRSM originally conceptualized in [1].  The SWM, 
much like the VRSM capable of offering three-DOF in a 
single joint, is essentially a ball-joint-like, brushless, direct-
drive actuator.  However, unlike a VRSM which has been 
mainly designed to control its three-DOF angular 
displacements, the SWM discussed here offers a means to 
control in open-loop (OL) the orientation of a rotating shaft 
in the single spherical joint. 

The interest to develop an open-loop stable spherical 
motor has led us to the concept of a SWM operated on a 
push-pull principle and the distributed multi-pole (DMP) 
method to model the magnetic field of a permanent magnet 
in closed-loop [2].  Illustrations of the DMP method for 
deriving the torque model of a spherical motor can be found 
in [3].  In this paper, we extend the application of the DMP 
method to the design of a model-based controller for 
operating the SWM in open-loop. 

2. Dynamic model of SWM 

A dynamic analysis of a spherical wheel motor including 
a torque computation is essential for optimizing the design 
and performance in controlling precise motion. Figure 1 
illustrates the schematic design of the SWM totally 
consisting of mr permanent magnets (PMs) in the rotor, ms 
electromagnets (EMs) in the stator and a universal ball 
bearing at a centre of the rotor, which supports the rotor and 
enables three DOFs motion. Despite its simple structure, 
there are a number of difficulties in controlling orientation 
and analyzing a magnetic field for torque computation.  

As shown in Fig. 1, the rotor and the stator of the SWM 
are spherically symmetric with respect to both electrical and 
mechanical configurations in the design.  Both PMs and 
EMs are equally spaced on four circular planes accordingly 
(i=1,2,3...,mr and j=1,2,3,...,ms). In addition to the planes 
along with the z-axis, the PMs and EMs are grouped in pairs 
and every two pairs form a plane, and their magnetization 
axes pass radially through the centre with opposite polarities. 
Once an electric current input is applied, a pair of EMs is 
energized at the same time and thus, twice of a torque is 
generated accordingly. The torques generated by the PMs 
and EMs enable to control the rotor in a desired orientation 
while it maintains spinning. 

The dynamic equations of motion including torques can 
be derived using the Lagrangian formulation in terms of the 

ZYZ Euler angles (α, β, γ) shown in Fig. 1, which has the 
following form in (1). 

 
Fig. 1 Design of SWM 
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;  due to the 
symmetry of the rotor along the Z axis and the rotor center 
of gravity is assumed to coincide with the rotation center. In 
(1c), Q represents the applied (magnetic) torque to the 
generalized moments in the rotor coordinates. The torque 
vector can be computed from distributed multi-pole (DMP) 
method in [3]. 

Since the inertia matrix [M] is positive-definite in the 
inclination range of control, −20°≤(α, β)≤ 20°, the nonlinear 
dynamics (8) can be expressed in the standard state-space 
form: 

 
(2)

where f q q q R− ×= ∈M C  is given by 

( )
( )

{ }

sec (2 3 )
1( ) ( )

(2 3 ) tan

a t a

a t a
t

t a t a

I I I S

f q C I I I S
I

I C I I I S

β

β β

β β

β β γ α

α γ α

β α γ α β

⎡ ⎤+ −
⎢ ⎥
⎢ ⎥= − + −
⎢ ⎥
⎢ ⎥⎡ ⎤− + + −⎣ ⎦⎣ ⎦

& & &

& & &

& & & &

(3)

The equations of motion in (2) and (3) can be linearized 
around the desired state and expressed in (4), which will be 
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used for designing a closed-loop control system later.  
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3. Open-loop (OL  control of SWM ) 
The SWM features its orientation control with or without 

continuously spinning of a rotor. The feasibility of an open-
loop control for the SWM which decouples the orientation 
control from the spin motion has been shown in [2]. The 
open-loop controller consists of two parts; torque model-
based inclination (α, β) control and switching spin rate ( γ& ) 
control so that two motions can be controlled independently. 
Namely, the magnitude of current inputs is controlling the 
orientation of the rotor while the frequency of them the 
spinning rate. Although the control system has been 
successfully demonstrated both in simulations and 
experiments, the performance (in particular for transient 
periods such as oscillation, delay, and overshoot, etc) needs 
to be improved using either a feedback control system or a 
model based open loop control one of which is input shaping 
technique to shape an input of the system so as to minimi
ze undesired effects in outputs.  

Figure 2 shows an open-loop controller of the orientation 
of the SWM. The inclination current inputs are governed by 
the driving torque ΔT directly.  The torque required to 
maintain a desired orientation at (αd, βd) can be given by 

⎡ ⎤ = Δ⎣ ⎦ αβ dT(α,β) u T%  (5)
where  can be computed from the inverse of (1) 

including the dynamics of the rotor and is the orientation-
dependent torque constants in the forms of Lorentz equation 
or Maxwell stress tensor. 

Δ dT
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Fig. 2 Open-loop controller of SWM 

 
In general, the orientation-dependent torque constants in 

(5) must be volume integrated numerically in real time. To 
reduce the computation to a tractable form, we take 

advantages that the torque is a linear function of to currents 
and apply the principle of superposition to compute the total 
magnetic torque acting on the rotor:  
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js and are the position vectors of the jkr
th EM and the kth 

PM respectively; ˆ ( )f ϕ is a curve-fitting function of the 
torque between the kth PM and the jth EM in terms of the 
separation angle ϕ :  

( ) ( )1cos /jk j k jϕ −= •s r s rk  (7)

The current vector to generate this torque is given by the 
inverse model in (8). Figure 7 and 8 present the experimental 
data of the OL control using the step inputs given in (8). 
Although they have large oscillation and overshoot in the 
transient period, the results show feasibility of the OL 
control of the SWM. 

( ) d⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
-1T T

αβu T T T% % % T  (8)

 

 
(a) Inclination torques (b) Applied current inputs 

Fig. 7 Open loop control using step input  

 
(a) Step response in OL control (b) Transient response 

Fig. 8 Step response of the open-loop control  
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