1. Introduction

Shielding in magnetic field is more difficult than in electric field. So, it can be said that magnetic field influences the biocompatibility more than electric field. In order to prevent distortions in the image or magnetic field by the micro-pin after permanent transplant of an anastomotic ring during free flap or plastic reconstruction, the current density, magnetic susceptibility, and electrical conductivity of Ti-6Al-4V must be evaluated. This study simulated the following: 1) calculation of the current density created by micro-pin when radiated with magnetic field of 1T~4T(Tesla) 2) evaluation of electrical conductivity of the current density of the micro-pin. 3) verification of magnetic susceptibility with respect to the relative position between the micro-pins.

2. Analysis of 3-dimensional Magnetic Field with Respect to Biot-Savart’s Law

The result of Finite Element Model (FEM) can be highly trusted when it contains finite plane as in electrical instruments. However, the evaluative analysis is rather vague for magnetic fields, thus limits 3-dimensional region segmentation. Consequently, it is more accurate to apply Biot-Savart’s law if there is no dielectric substance. In this study, human tissue model was hypothesized to be a magnetic cube cell, modeled through Impedance Network, and analyzed after converting the Maxwell equation to Circuit Eq. Impedance method is highly effective for finding the inner current density or induced electric field if the frequency is low. When human tissue is exposed to a time-variant magnetic field, the human body becomes non-assimilative, hence, a critical factor that could influence the magnetic field. The eddy current can be calculated by forming an electrical network from the complex conductivity \(\sigma + j \omega \varepsilon \) of the tissue.

\[dB = \frac{\mu_0}{4\pi} \frac{i dl \times r}{r^3} \]

From a particular point of a space to an equation of 3-dimensional A.C. magnetic field vector \(B \), the phase difference in each axes is considered and is defined as Eq. (4) by assuming a single frequency.

\[B(t) = \sqrt{2} B_x \sin(\omega t) i + \sqrt{2} B_y \sin(\omega t + \alpha) j + \sqrt{2} B_z \sin(\omega t + \beta) k \]

In 3-dimensional magnetic field, when \(\alpha = \beta = 0 \), it becomes a straight line. Under other conditions, it becomes an oval or a circle. The direction vector of magnetic vector \(B \) is given in Eq. (5).

\[e \{ e_x, e_y, e_z \} = \{ B_x \sin(\omega t), B_y \sin(\omega t + \alpha), B_z \sin(\omega t + \beta) \} \]

The virtual value \(B_{ms} \) of magnetic field \(B \) is defined as Eq. (6) by the average of one endogenous periodicity \(T = 1/f = 2\pi/\omega \) of \(B \).

\[B_s = \frac{1}{T} \int_{-T/2}^{T/2} B \cdot \text{ld}t = \frac{\omega}{2} \int_{-\omega/2}^{\omega/2} B \cdot \text{ld}t \]

The virtual value \(B_{ms} \) of magnetic field \(B \) calculated in Eq. (6) is described in Eq. (7).
\[B_s = \sqrt{B_x^2 + B_y^2 + B_z^2} \quad (7) \]

In IEEE Standard, the sum of squared virtual value of each axial magnetic field elements is square rooted. The value is then defined as resultant magnetic field and applied in Eq. (7) in the same manner.

3. Analysis of Magnetic Field and Establishing an MRI Machine System Through Finite Element Model

There are three kinds of magnets used for Magnetic Resonance (MR): permanent magnet, electromagnet, and superconductive magnet. MRI provides a high resolution image so that one can observe fine tissue inside a human body. In most MRI’s, superconductive magnets are used. NbTi(Niobium-Titanium) is used for superconductors that require high uniformity, reliability, and safety. An MRI that uses superconductor needs to be at absolute temperature of 4.2K (-268.8°C) as Helium and Nitrogen must be maintained in liquid state. Though an MRI that uses superconductor provides high resolution image, it requires a lot of maintenance cost. Consequently, MRI that employs permanent magnet is the most widely accepted diagnostic instrument. Hence, this research only evaluated an MRI that uses permanent magnets. As stated in systems of coordinates Fig. 1 and Fig 2, MRI that uses permanent magnets is a y-axis symmetrical model, half-modeling technique was applied for optimization and analysis process. The corresponding rough plan and design domain are represented in Fig. 2. For optimization process, the pole and yolk parts were each defined as design domain I and II.

4. Conclusions

The material of the pin is Ti-6Al-4V which may be displaced towards the coil and cause heat in human body depending on the magnetic and electric densities of an MRI system. Therefore, the actual magnetic and electric densities loaded on a pin by an MRI were evaluated. 1T/one-pin showed the highest magnetic density on hand part, and 1T/two-pin showed the highest magnetic density on chest part. However, in 2T, both one-pin and two-pin showed the highest magnetic density on head part.

Acknowledgment

This study was funded by the Medical Health Research Development Project (Futuristic Medical Appliances Development Project) of the Ministry of Health and Welfare (A092140).